Technical Brief

Metatarsal Loading During Gait—A Musculoskeletal Analysis

[+] Author and Article Information
Amir A. Al-Munajjed

Musculoskeletal Research,
Anybody Technology,
Niels Jernes Vej 10,
Aalborg 9220, Denmark
e-mail: amir.al-munajjed@gmx.de

Jeffrey E. Bischoff, Mehul A. Dharia

Research and Development,
Zimmer, Inc.,
Warsaw, IN 46581

Scott Telfer

Institute of Applied Health Research,
Glasgow Caledonian University,
Glasgow G4 0BA, UK;
Department of Orthopaedics and Sports Medicine,
University of Washington,
Seattle, WA 98195

James Woodburn

Institute of Applied Health Research,
Glasgow Caledonian University,
Glasgow G4 0BA, UK

Sylvain Carbes

Anybody Technology,
Aalborg 9220, Denmark

1Corresponding author.

Manuscript received May 3, 2015; final manuscript received December 20, 2015; published online January 29, 2016. Assoc. Editor: Kenneth Fischer.

J Biomech Eng 138(3), 034503 (Jan 29, 2016) (6 pages) Paper No: BIO-15-1214; doi: 10.1115/1.4032413 History: Received May 03, 2015; Revised December 20, 2015

Detailed knowledge of the loading conditions within the human body is essential for the development and optimization of treatments for disorders and injuries of the musculoskeletal system. While loads in the major joints of the lower limb have been the subject of extensive study, relatively little is known about the forces applied to the individual bones of the foot. The objective of this study was to use a detailed musculoskeletal model to compute the loads applied to the metatarsal bones during gait across several healthy subjects. Motion-captured gait trials and computed tomography (CT) foot scans from four healthy subjects were used as the inputs to inverse dynamic simulations that allowed the computation of loads at the metatarsal joints. Low loads in the metatarsophalangeal (MTP) joint were predicted before terminal stance, however, increased to an average peak of 1.9 times body weight (BW) before toe-off in the first metatarsal. At the first tarsometatarsal (TMT) joint, loads of up to 1.0 times BW were seen during the early part of stance, reflecting tension in the ligaments and muscles. These loads subsequently increased to an average peak of 3.0 times BW. Loads in the first ray were higher compared to rays 2–5. The joints were primarily loaded in the longitudinal direction of the bone.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.


D'Lima, D. D. , Fregly, B. J. , Patil, S. , Steklov, N. , and Colwell, C. W. , 2012, “ Knee Joint Forces: Prediction, Measurement, and Significance,” Proc. Inst. Mech. Eng., Part H, 226(2), pp. 95–102. [CrossRef]
Kutzner, I. , Heinlein, B. , Graichen, F. , Bender, A. , Rohlmann, A. , Halder, A. , Beier, A. , and Bergmann, G. , 2010, “ Loading of the Knee Joint During Activities of Daily Living Measured In Vivo in Five Subjects,” J. Biomech., 43(11), pp. 2164–2173. [CrossRef] [PubMed]
Bergmann, G. , Graichen, F. , Bender, A. , Kääb, M. , Rohlmann, A. , and Westerhoff, P. , 2007, “ In Vivo Glenohumeral Contact Forces—Measurements in the First Patient 7 Months Postoperatively,” J. Biomech., 40(10), pp. 2139–2149. [CrossRef] [PubMed]
Bergmann, G. , Deuretzbacher, G. , Heller, M. , Graichen, F. , Rohlmann, A. , Strauss, J. , and Duda, G. N. , 2001, “ Hip Contact Forces and Gait Patterns From Routine Activities,” J. Biomech., 34(7), pp. 859–871. [CrossRef] [PubMed]
Kirane, Y. M. , Michelson, J. D. , and Sharkey, N. A. , 2008, “ Contribution of the Flexor Hallucis Longus to Loading of the First Metatarsal and First Metatarsophalangeal Joint,” Foot Ankle Int., 29(4), pp. 367–377. [CrossRef] [PubMed]
Jacob, H. A. , 2001, “ Forces Acting in the Forefoot During Normal Gait—An Estimate,” Clin. Biomech. (Bristol, Avon), 16(9), pp. 783–792. [CrossRef] [PubMed]
Cracchiolo, A. , 3rd, Swanson, A. , and Swanson, G. D. , 1981, “ The Arthritic Great Toe Metatarsophalangeal Joint: A Review of Flexible Silicone Implant Arthroplasty From Two Medical Centers,” Clin. Orthop. Relat. Res., 157, pp. 64–69. [PubMed]
Sharkey, N. A. , Ferris, L. , Smith, T. S. , and Matthews, D. K. , 1995, “ Strain and Loading of the Second Metatarsal During Heel-Lift,” J. Bone Jt. Surg. Am., 77, pp. 1050–1057.
Stokes, I. , Hutton, W. , and Stott, J. R. , 1979, “ Forces Acting on the Metatarsals During Normal Walking,” J. Anat., 129(3), pp. 579–590. [PubMed]
Wyss, U. P. , McBride, I. , Murphy, L. , Cooke, T. D. , and Olney, S. J. , 1990, “ Joint Reaction Forces at the First MTP Joint in a Normal Elderly Population,” J. Biomech., 23(10), pp. 977–984. [CrossRef] [PubMed]
Cheung, J. T.-M. , Zhang, M. , Leung, A. K.-L. , and Fan, Y.-B. , 2005, “ Three-Dimensional Finite Element Analysis of the Foot During Standing—A Material Sensitivity Study,” J. Biomech., 38(5), pp. 1045–1054. [CrossRef] [PubMed]
Liacouras, P. C. , and Wayne, J. S. , 2007, “ Computational Modeling to Predict Mechanical Function of Joints: Application to the Lower Leg With Simulation of Two Cadaver Studies,” ASME J. Biomech. Eng., 129(6), pp. 811–817. [CrossRef]
Wu, L. , 2007, “ Nonlinear Finite Element Analysis for Musculoskeletal Biomechanics of Medial and Lateral Plantar Longitudinal Arch of Virtual Chinese Human After Plantar Ligamentous Structure Failures,” Clin. Biomech. (Bristol, Avon), 22(2), pp. 221–229. [CrossRef] [PubMed]
Carbes, S. , Telfer, S. T. S. , Woodburn, J. , Oosterwaal, M. , and Rasmussen, J. , 2011, “ A New Multisegmental Foot Model and Marker Protocol for Accurate Simulation of the Foot Biomechanics During Walking,” Congress of the International Society of Biomechanics (ISB 2011), Brussels, Belgium, July 3–7, Paper No. 183.
Carbes, S. , Tørholm Christensen, S. , and Rasmussen, J. , 2011, “ A Detailed Twenty-Six Segments Kinematic Foot Model for Biomechanical Simulation,” A-FOOTPRINT (Ankle and Foot Orthotic Personalisation Via Rapid Manufacturing) Project, Funded by the European Commission Seventh Framework Programme, Glasgow Caledonian University, Glasgow, UK.
Oosterwaal, M. , Telfer, S. , Tørholm Christensen, S. , Carbes, S. , van Rhijn, L. , Macduff, R. , Meijer, K. , and Woodburn, J. , 2011, “ Generation of Subject-Specific, Dynamic, Multisegment Ankle and Foot Models to Improve Orthotic Design: A Feasibility Study,” BMC Musculoskeletal Disord., 12(1), pp. 256–266. [CrossRef]
Rasmussen, J. , Damsgaard, M. , and Voigt, M. , 2001, “ Muscle Recruitment by the Min/Max Criterion—A Comparative Numerical Study,” J. Biomech., 34(3), pp. 409–415.
Andersen, M. S. , Damsgaard, M. , MacWilliams, B. , and Rasmussen, J. , 2010, “ A Computationally Efficient Optimisation-Based Method for Parameter Identification of Kinematically Determinate and Over-Determinate Biomechanical Systems,” Comput. Methods Biomech. Biomed. Eng., 13(2), pp. 171–183. [CrossRef]
Lundgren, P. , Nester, C. , Liu, A. , Arndt, A. , Jones, R. , Stacoff, A. , Wolf, P. , and Lundberg, A. , 2008, “ Invasive In Vivo Measurement of Rear-, Mid- and Forefoot Motion During Walking,” Gait Posture, 28(1), pp. 93–100. [CrossRef] [PubMed]
Cailliet, R. , 2004, The Illustrated Guide to Functional Anatomy of the Musculoskeletal System, D J R Evans, AMA Press, Chicago, IL.
Stagni, R. , Leardini, A. , and Ensini, A. , 2004, “ Ligament Fibre Recruitment at the Human Ankle Joint Complex in Passive Flexion,” J. Biomech., 37(12), pp. 1823–1829. [CrossRef] [PubMed]
Funk, J. R. , Hall, G. W. , Crandall, J. R. , and Pilkey, W. D. , 2000, “ Linear and Quasi-Linear Viscoelastic Characterization of Ankle Ligaments,” ASME J. Biomech. Eng., 122(1), pp. 15–22. [CrossRef]
Siegler, S. , Udupa, J. K. , Ringleb, S. I. , Imhauser, C. W. , Hirsch, B. E. , Odhner, D. , Saha, P. K. , Okereke, E. , and Roach, N. , 2005, “ Mechanics of the Ankle and Subtalar Joints Revealed Through a 3d Quasi-Static Stress MRI Technique,” J. Biomech., 38(3), pp. 567–578. [CrossRef] [PubMed]
Moraes do Carmo, C. C. , Fonseca de Almeida Melão, L. I. , Valle de Lemos Weber, M. F. , Trudell, D. , and Resnick, D. , 2008, “ Anatomical Features of Plantar Aponeurosis: Cadaveric Study Using Ultrasonography and Magnetic Resonance Imaging,” Skeletal Radiol., 37(10), pp. 929–935. [CrossRef] [PubMed]
Wright, I. , Neptune, R. , van Den Bogert, A. , and Nigg, B. , 1998, “ Passive Regulation of Impact Forces in Heel-Toe Running,” Clin. Biomech. (Bristol, Avon), 13(7), pp. 521–531. [CrossRef] [PubMed]
Kitaoka, H. B. , Luo, Z. P. , Growney, E. S. , Berglund, L. J. , and An, K. N. , 1994, “ Material Properties of the Plantar Aponeurosis,” Foot Ankle Int., 15(10), pp. 557–560. [CrossRef] [PubMed]
Ward, K. A. , and Soames, R. W. , 1997, “ Morphology of the Plantar Calcaneocuboid Ligaments,” Foot Ankle Int., 18(10), pp. 649–653. [CrossRef] [PubMed]
Taniguchi, A. , Tanaka, Y. , Takakura, Y. , Kadono, K. , Maeda, M. , and Yamamoto, H. , 2003, “ Anatomy of the Spring Ligament,” J. Bone Jt. Surg. Am., 85-A, pp. 2174–2178.
Patil, V. , Ebraheim, N. A. , Frogameni, A. , and Liu, J. , 2007, “ Morphometric Dimensions of the Calcaneonavicular (Spring) Ligament,” Foot Ankle Int., 28(8), pp. 927–932. [CrossRef] [PubMed]
Mengiardi, B. , Zanetti, M. , Schöttle, P. B. , Vienne, P. , Bode, B. , Hodler, J. , and Pfirrmann, C. W. A. , 2005, “ Spring Ligament Complex: MR Imaging-Anatomic Correlation and Findings in Asymptomatic Subjects,” Radiology, 237(1), pp. 242–249. [CrossRef] [PubMed]
de Zee, M. , Dalstra, M. , Cattaneo, P. M. , Rasmussen, J. , Svensson, P. , and Melsen, B. , 2007, “ Validation of a Musculo-Skeletal Model of the Mandible and Its Application to Mandibular Distraction Osteogenesis,” J. Biomech., 40(6), pp. 1192–1201. [CrossRef] [PubMed]
Magee, D. J. , 1997, Orthopedic Physical Assessment, 3rd ed., W.B. Saunders, Philadelphia, PA.
Winson, I. , Lundberg, A. , and Bylund, C. , 1995, “ The Pattern of Motion of the Longitudinal Arch of the Foot,” Foot, 4(3), pp. 151–154. [CrossRef]
Arndt, A. , Wolf, P. , Liu, A. , Nester, C. , Stacoff, A. , Jones, R. , Lundgren, P. , and Lundberg, A. , 2007, “ Intrinsic Foot Kinematics Measured In Vivo During the Stance Phase of Slow Running,” J. Biomech., 40(12), pp. 2672–2678. [CrossRef] [PubMed]
McBride, I. D. , Wyss, U. P. , Cooke, T. D. , Murphy, L. , Phillips, J. , and Olney, S. J. , 1991, “ First Metatarsophalangeal Joint Reaction Forces During High-Heel Gait,” Foot Ankle, 11(5), pp. 282–288. [CrossRef] [PubMed]
Sharkey, A. , Donahue, S. W. , and Ferris, L. , 1999, “ Biomechanical Consequences of Plantar Fascial Release or Rupture During Gait. Part II: Alterations in Forefoot Loading,” Foot Ankle Int., 20(2), pp. 86–96. [CrossRef] [PubMed]
Sharkey, N. A. , and Hamel, A. J. , 1998, “ A Dynamic Cadaver Model of the Stance Phase of Gait: Performance Characteristics and Kinetic Validation,” Clin. Biomech. (Bristol, Avon), 13(6), pp. 420–433. [CrossRef] [PubMed]
Wong, D. W. , Zhang, M. , Yu, J. , and Leung, A. K. L. , 2014, “ Biomechanics of First Ray Hypermobility: An Investigation on Joint Force During Walking Using Finite Element Analysis,” Med. Eng. Phys., 36(11), pp. 1388–1393. [CrossRef] [PubMed]
Kristen, K. H. , Berger, K. , Berger, C. , Kampla, W. , Anzböck, W. , and Weitzel, S. H. , 2005, “ The First Metatarsal Bone Under Loading Conditions: A Finite Element Analysis,” Foot Ankle Clin., 10(1), pp. 1–14. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 1

The Glasgow–Maastricht foot model with bones, major muscles (right side), ligaments (left side), and joints. The first metatarsal bone (MT1) with the MTP joint (J1) and the TMT joint (J2) is highlighted separately. Extensor muscles (ExtDig) and tibialis anterior (TibAnt) can be seen on the dorsal side, PF, and flexor muscles (FlexDig), and tibialis posterior (TibPost) can be seen on the plantar side. Note that most of the foot muscles overlap the tarsal region, but do not insert into it.

Grahic Jump Location
Fig. 6

Joint reaction forces of all the five TMT joints during stance as average of four different subjects

Grahic Jump Location
Fig. 5

Joint reaction forces of all the five MTP joints during stance as average of four different subjects

Grahic Jump Location
Fig. 4

First TMT joint reaction force during the gait cycle in each of the four subjects

Grahic Jump Location
Fig. 3

First MTP joint reaction force during stance phase in each of the four subjects

Grahic Jump Location
Fig. 2

Comparison of EMG measurements (“EMG”) of the peroneus, biceps femoris, rectus femoris, vatus lateralis, soleus, gastrocnemius lateralis, gastrocnemius medialis, and tibialis anterior with predicted muscle activations (“ABT”) from the model



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In