Technical Brief

Validation of a Finite Element Humeroradial Joint Model of Contact Pressure Using Fuji Pressure Sensitive Film

[+] Author and Article Information
Sunghwan Kim

University of Pittsburgh,
401 Shady Avenue Apartment B401,
Pittsburgh, PA 15206
e-mail: ksh1220@gmail.com

Mark Carl Miller

Allegheny General Hospital,
University of Pittsburgh,
320 East North Avenue,
Pittsburgh, PA 15212
e-mail: mcmiller@wpahs.org

Manuscript received November 26, 2014; final manuscript received October 20, 2015; published online November 23, 2015. Assoc. Editor: Zong-Ming Li.

J Biomech Eng 138(1), 014501 (Nov 23, 2015) (4 pages) Paper No: BIO-14-1590; doi: 10.1115/1.4031976 History: Received November 26, 2014; Revised October 20, 2015

A finite element (FE) elbow model was developed to predict the contact stress and contact area of the native humeroradial joint. The model was validated using Fuji pressure sensitive film with cadaveric elbows for which axial loads of 50, 100, and 200 N were applied through the radial head. Maximum contact stresses ranged from 1.7 to 4.32 MPa by FE predictions and from 1.34 to 3.84 MPa by pressure sensitive film measurement while contact areas extended from 39.33 to 77.86 mm2 and 29.73 to 83.34 mm2 by FE prediction and experimental measurement, respectively. Measurements from cadaveric testing and FE predictions showed the same patterns in both the maximum contact stress and contact area, as another demonstration of agreement. While measured contact pressures and contact areas validated the FE predictions, computed maximum stresses and contact area tended to overestimate the maximum contact stress and contact area.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.


Mason, M. L. , 1954, “ Some Observations on Fractures of the Head of the Radius With a Review of a Hundred Cases,” Br. J. Surg., 42(172), pp. 123–132. [CrossRef] [PubMed]
Taylor, T. K. , and O'Connor, B. T. , 1964, “ The Effect Upon the Inferior Radio-Ulnar Joint of Excision of the Head of the Radius in Adults,” J. Bone Jt. Surg., Br., 46, pp. 83–88 .
Moro, J. K. , Werier, J. , MacDermid, J. C. , Patterson, S. D. , and King, G. J. , 2001, “ Arthroplasty With a Metal Radial Head for Unreconstructible Fractures of the Radial Head,” J. Bone Jt. Surg., 83(8), pp. 1201–1211.
Ring, D. , Quintero, J. , and Jupiter, J. B. , 2002, “ Open Reduction and Internal Fixation of Fractures of the Radial Head,” J. Bone Jt. Surg., 84(10), pp. 1811–1815.
Ashwood, N. , Bain, G. I. , and Unni, R. , 2004, “ Management of Mason Type-III Radial Head Fractures With a Titanium Prosthesis, Ligament Repair, and Early Mobilization,” J. Bone Jt. Surg., 86(2), pp. 274–280.
Moon, J. G. , Berglund, L. J. , Zachary, D. , An, K. N. , and O'Driscoll, S. W. , 2009, “ Radiocapitellar Joint Stability With Bipolar Versus Monopolar Radial Head Prostheses,” J. Shoulder Elbow Surg., 18(5), pp. 779–784. [CrossRef] [PubMed]
Harrington, I. J. , Sekyi-Otu, A. , Barrington, T. W. , Evans, D. C. , and Tuli, V. , 2001, “ The Functional Outcome With Metallic Radial Head Implants in the Treatment of Unstable Elbow Fractures: A Long-Term Review,” J. Trauma, 50(1), pp. 46–52. [CrossRef] [PubMed]
Knight, D. J. , Rymaszewski, L. A. , Amis, A. A. , and Miller, J. H. , 1993, “ Primary Replacement of the Fractured Radial Head With a Metal Prosthesis,” J. Bone Jt. Surg., Br., 75(4), pp. 572–576.
Muriuki, M. G. , Gilbertson, L. G. , and Harner, C. D. , 2009, “ Characterization of the Performance of a Custom Program for Image Processing of Pressure Sensitive Film,” ASME J. Biomech. Eng., 131(1), p. 014503. [CrossRef]
Schenck, R. C., Jr. , Athanasiou, K. A. , Constantinides, G. , and Gomez, E. , 1994, “ A Biomechanical Analysis of Articular Cartilage of the Human Elbow and a Potential Relationship to Osteochondritis Dissecans,” Clin. Orthop. Relat. Res., 299, p. 305. [CrossRef] [PubMed]
Stolk, J. , Verdonschot, N. , Cristofolini, L. , Toni, A. , and Huiskes, R. , 2002, “ Finite Element and Experimental Models of Cemented Hip Joint Reconstructions Can Produce Similar Bone and Cement Strains in Pre-Clinical Tests,” J. Biomech., 35(4), pp. 499–510. [CrossRef] [PubMed]
Park, S. , Hung, C. T. , and Ateshian, G. A. , 2004, “ Mechanical Response of Bovine Articular Cartilage Under Dynamic Unconfined Compression Loading at Physiological Stress Levels,” Osteoarthritis Cartilage, 12(1), pp. 65–73. [CrossRef] [PubMed]
Harris, M. D. , Anderson, A. E. , Henak, C. R. , Ellis, B. J. , Peters, C. L. , and Weiss, J. A. , 2012, “ Finite Element Prediction of Cartilage Contact Stresses in Normal Human Hips,” J. Orthop. Res., 30(7), pp. 1133–1139. [CrossRef] [PubMed]
Buchler, P. , Ramaniraka, N. A. , Rakotomanana, L. R. , Iannotti, J. P. , and Farron, A. , 2002, “ A Finite Element Model of the Shoulder: Application to the Comparison of Normal and Osteoarthritic Joints,” Clin. Biomech., 17(9–10), pp. 630–639. [CrossRef]
Anderson, A. E. , Ellis, B. J. , Maas, S. A. , Peters, C. L. , and Weiss, J. A. , 2008, “ Validation of Finite Element Predictions of Cartilage Contact Pressure in the Human Hip Joint,” ASME J. Biomech. Eng., 130(5), p. 051008. [CrossRef]
Regan, W. D. , Korinek, S. L. , Morrey, B. F. , and An, K. N. , 1991, “ Biomechanical Study of Ligaments Around the Elbow Joint,” Clin. Orthop. Relat. Res., 271, pp. 170–179. [PubMed]
Afoke, N. Y. , Byers, P. D. , and Hutton, W. C. , 1987, “ Contact Pressures in the Human Hip Joint,” J. Bone. Jt. Surg., Br., 69(4), pp. 536–541.
Haut, R. C. , 1989, “ Contact Pressures in the Patellofemoral Joint During Impact Loading on the Human Flexed Knee,” J. Orthop. Res., 7(2), pp. 272–280. [CrossRef] [PubMed]
Fukubayashi, T. , and Kurosawa, H. , 1980, “ The Contact Area and Pressure Distribution Pattern of the Knee. A Study of Normal and Osteoarthritic Knee Joints,” Acta Orthop. Scand., 51(6), pp. 871–879. [CrossRef] [PubMed]
Werner, F. W. , Murphy, D. J. , and Palmer, A. K. , 1989, “ Pressures in the Distal Radioulnar Joint: Effect of Surgical Procedures Used for Kienbock's Disease,” J. Orthop. Res., 7(3), pp. 445–450. [CrossRef] [PubMed]
Hale, J. E. , and Brown, T. D. , 1992, “ Contact Stress Gradient Detection Limits of Pressensor Film,” ASME J. Biomech. Eng., 114(3), pp. 352–357. [CrossRef]
Wu, J. Z. , Herzog, W. , and Epstein, M. , 1998, “ Effects of Inserting a Pressensor Film Into Articular Joints on the Actual Contact Mechanics,” ASME J. Biomech. Eng., 120(5), pp. 655–659. [CrossRef]
Liau, J. J. , Hu, C. C. , Cheng, C. K. , Huang, C. H. , and Lo, W. H. , 2001, “ The Influence of Inserting a Fuji Pressure Sensitive Film Between the Tibiofemoral Joint of Knee Prosthesis on Actual Contact Characteristics,” Clin. Biomech., 16(2), pp. 160–166. [CrossRef]
Liau, J. J. , Cheng, C. K. , Huang, C. H. , and Lo, W. H. , 2002, “ Effect of Fuji Pressure Sensitive Film on Actual Contact Characteristics of Artificial Tibiofemoral Joint,” Clin. Biomech., 17(9–10), pp. 698–704. [CrossRef]
Ateshian, G. A. , Kwak, S. D. , Soslowsky, L. J. , and Mow, V. C. , 1994, “ A Stereophotogrammetric Method for Determining In Situ Contact Areas in Diarthrodial Joints, and a Comparison With Other Methods,” J. Biomech., 27(1), pp. 111–124. [CrossRef] [PubMed]
Szivek, J. A. , Cutignola, L. , and Volz, R. G. , 1995, “ Tibiofemoral Contact Stress and Stress Distribution Evaluation of Total Knee Arthroplasties,” J. Arthroplasty, 10(4), pp. 480–491. [CrossRef] [PubMed]
Stewart, T. , Jin, Z. M. , Shaw, D. , Auger, D. D. , Stone, M. , and Fisher, J. , 1995, “ Experimental and Theoretical Study of the Contact Mechanics of Five Total Knee Joint Replacements,” Proc. Inst. Mech. Eng., Part H, 209(4), pp. 225–231. [CrossRef]
Harris, M. L. , Morberg, P. , Bruce, W. J. , and Walsh, W. R. , 1999, “ An Improved Method for Measuring Tibiofemoral Contact Areas in Total Knee Arthroplasty: A Comparison of K-Scan Sensor and Fuji Film,” J. Biomech., 32(9), pp. 951–958. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 3

Comparison of the maximum contact stress (left) and the contact area (right) between when the bone was modeled as a whole cancellous bone and a whole cortical bone ((a) and (b)), with three different cartilage thicknesses on the radial head side ((c) and (d)), and with three different ligament stiffnesses ((e) and (f))

Grahic Jump Location
Fig. 2

Maximum contact stress (top left), contact area (top right), and contact stress distributions (bottom)

Grahic Jump Location
Fig. 1

Front (left) and side view (right) of the native elbow FE mesh



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In