Research Papers

Optimization of a Cemented Femoral Prosthesis Considering Bone Remodeling

[+] Author and Article Information
Leandro Luis Corso

Department of Mechanical Engineering,
University of Caxias do Sul,
Rua Francisco Getúlio Vargas,
1130, Bairro Petrópolis,
Caxias do Sul CEP 95070-560, Brazil
e-mail: llcorso@yahoo.com.br

Leandro de Freitas Spinelli

Department of Orthopedics
and Traumatology/Hip Surgery,
Irmandade da Santa Casa de Misericóridia,
Porto Alegre,
Rio Grande do Sul, Brazil;
Department of Engineering,
Federal University of Rio Grande do Sul,
Rua Ramiro Barcelos, 1323/701,
Porto Alegre CEP 90.035-006,
Rio Grande do Sul, Brazil
e-mail: spinelli@portoweb.com.br

Fernando Schnaid

Department of Civil Engineering,
Federal University of Rio Grande do Sul,
Av. Osvaldo Aranha, 99, 3o andar,
Porto Alegre CEP 90050-170,
Rio Grande do Sul, Brazil
e-mail: fernando@ufrgs.br

Crisley Dossin Zanrosso

Medical Department,
Lutheran University of Brazil/ULBRA,
Av. Farroupilha, 8001, Bairro São José,
Canoas CEP 92425-900,
Rio Grande do Sul, Brazil
e-mail: crisleyz@yahoo.com.br

Rogério José Marczak

Department of Mechanical Engineering,
Federal University of Rio Grande do Sul,
Sarmento Leite, 425,
Porto Alegre CEP 90050-170,
Rio Grande do Sul, Brazil
e-mail: rato@mecanica.ufrgs.br

1Corresponding author.

Manuscript received February 7, 2015; final manuscript received October 21, 2015; published online November 18, 2015. Assoc. Editor: Guy M. Genin.

J Biomech Eng 138(1), 011002 (Nov 18, 2015) (7 pages) Paper No: BIO-15-1054; doi: 10.1115/1.4031938 History: Received February 07, 2015; Revised October 21, 2015

The study presents a numerical methodology for minimizing the bone loss in human femur submitted to total hip replacement (THR) procedure with focus on cemented femoral stem. Three-dimensional computational models were used to describe the femoral bone behavior. An optimization procedure using the genetic algorithm (GA) method was applied in order to minimize the bone loss, considering the geometry and the material of the prosthesis as well as the design of the stem. Internal and external bone remodeling were analyzed numerically. The numerical method proposed here showed that the bone mass loss could be reduced by 24%, changing the design parameters.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.


Spinelli, L. F. , Macedo, C. A. S. , Galia, C. R. , Rosito, R. , Schnaid, F. , Corso, L. L. , and Iturrioz, I. , 2012, “ Femoral Stem-Bone Interface Analysis of Logical Uncemented Stem,” Braz. J. Biomed. Eng., 28(3), pp. 238–247.
Bennet, D. , and Goswami, T. , 2008, “ Finite Element Analysis of Hip Stem Designs,” Mater. Des., 29(1), pp. 45–60. [CrossRef]
Prendergast, P. J. , 1997, “ Finite Element Models in Tissue Mechanics and Orthopaedic Implant Design,” Clin. Biomech., 12(6), pp. 343–366. [CrossRef]
Huiskes, R. , and van Rietbergen, B. , 1995, “ Preclinical Testing of Total Hip Stems: The Effects of Coating Placement,” Clin. Orthop. Relat. Res., 319, pp. 64–76. [PubMed]
Zidi, M. , and Ramtani, S. , 2000, “ Stability Analysis and Finite Element Simulation of Bone Remodeling Model,” ASME J. Biomech. Eng., 122(6), pp. 677–680. [CrossRef]
Huiskes, R. , and Boeklagen, R. , 1989, “ Mathematical Shape Optimization of Hip Prosthesis Design,” J. Biomech., 22(8–9), pp. 793–804. [CrossRef] [PubMed]
Fernandes, P. R. , Folgado, J. , and Ruben, R. B. , 2004, “ Shape Optimization of a Cementless Hip Stem for a Minimum of Interface Stress and Displacement,” Comput. Methods Biomech. Biomed. Eng., 7(1), pp. 51–61. [CrossRef]
Ruben, R. B. , Fernandes, P. R. , and Folgado, J. , 2012, “ On the Optimal Shape of Hip Implants,” J. Biomech., 45(2), pp. 239–246. [CrossRef] [PubMed]
Goldberg, D. E. , 1989, Genetic Algorithms in Search, Optimization and Machine Learning, Reading Addison-Wesley Publishing, Boston, MA.
Katoozian, H. , Davy, D. T. , Arshi, A. , and Saadati, U. , 2001, “ Material Optimization of Femoral Component of Total Hip Prosthesis Using Fiber Reinforced Polymeric Composites,” Med. Eng. Phys., 23, pp. 503–509. [CrossRef] [PubMed]
Tai, C.-L. , Shih, C.-H. , Chen, W.-P. , Lee, S.-S. , Liu, Y.-L. , Hsieh, P.-H. , and Chen, W.-J. , 2003, “ Finite Element Analysis of the Cervico-Trochanteric Stemless Femoral Prosthesis,” Clin. Biomech., 18(6), pp. S53–S58. [CrossRef]
Buroni, F. C. , and Comisso, P. E. , 2004, “ Modelado Numérico Computacional De Estruturas Óseas–Desarrollo De Uma Metodologia Y Aplicación a Uma Prótesis De Reemplazo De Cúpula Radial,” Proyecto final, Instituto Facultad de Ingeniería-Universidad Nacional de Mar del Plata, Mar del Plata.
Unnikrishnan, G. U. , Barest, G. D. , Berry, D. B. , Hussein, A. I. , and Morgan, E. F. , 2013, ASME J. Biomech. Eng., 135(10), p. 101007. [CrossRef]
Dickinson, A. S. , 2014, “ Analogy of Strain Energy Density Based Bone-Remodeling Algorithm and Structural Topology Optimization,” ASME J. Biomech. Eng., 131(1), p. 011012.
Colloca, M. , Ito, K. , and Rietbergen, B. V. , 2014, “ An Analytical Approach to Investigate the Evolution of Bone Volume Fraction in Bone Remodeling Simulation at the Tissue and Cell Level,” ASME J. Biomech. Eng., 136(3), p. 031004. [CrossRef]
Aznar, J. M. G. , 1999, “ Modelo De Remodelación Ósea: Análisis Numérico Y Aplicaciones Al Diseño De Fijaciones De Fracturas Del Fêmur Proximal,” Ph.D. thesis, University of Zaragoza, Zaragoza, Spain.
Garcia, J. M. , Doblaré, M. , and Cegoñino, J. , 2002, “ Bone Remodeling Simulation: A Tool for Implant Design,” Comput. Mater. Sci., 25(1–2), pp. 100–114. [CrossRef]
Jacobs, C. R. , 1994, “ Numerical Simulation of Bone Adaptation to Mechanical Loading,” Ph.D. thesis, Department of Mechanical Engineering, Stanford University, Stanford, CA.
Moreo, P. , Pérez, M. A. , García-Aznar, J. M. , and Doblaré, M. , 2006, “ Modelling the Mixed-Mode Failure of Cement–Bone Interfaces,” Eng. Fract. Mech., 73(10), pp. 1379–1395. [CrossRef]
Chanda, S. , Gupta, S. , and Pratihar, D. K. , 2015, “ A Genetic Algorithm Based Multi-Objective Shape Optimization Scheme for Cementless Femoral Implant,” ASME J. Biomech. Eng., 137(3), p. 034502. [CrossRef]
Huiskes, R. , Weinans, H. , Grootenboer, H. J. , Dalstra, M. , Fudala, B. , and Sloof, T. J. , 1987, “ Adaptive Bone-Remodelling Theory Applied to Prosthetic-Design Analysis,” J. Biomech., 20(11/12), pp. 1135–1150. [CrossRef] [PubMed]
Sridhar, I. , Adie, P. P. , and Ghista, D. N. , 2010, “ Optimal Design of Customised Hip Prosthesis Using Fiber Reinforced Polymer Composites,” Mater. Des., 31(6), pp. 2767–2775. [CrossRef]
Harris, W. H. , 1995, “ The Problem Is Osteolysis,” Clin. Orthop. Relat. Res., 311, pp. 46–53. [PubMed]
Harris, W. H. , 2001, “ Wear and Periprosthetic Osteolysis: The Problem,” Clin. Orthop. Relat. Res., 393, pp. 66–70. [CrossRef] [PubMed]
Beaupré, G. S. , Orr, T. E. , and Carter, D. R. , 1990, “ An Approach for Time Dependent Bone Modeling and Remodeling-Application: A Preliminary Remodeling Simulation,” J. Orthop. Res., 8(5), pp. 662–670. [CrossRef] [PubMed]
Martin, R. B. , 2007, “ Targeted Bone Remodeling Involves Bmu Steering as Well as Activation,” Bone, 40(6), pp. 1574–1580. [CrossRef] [PubMed]
Tsangari, H. , Findlay, D. M. , and Fazzalari, N. L. , 2007, “ Structural and Remodeling Indices in the Cancellous Bone of the Proximal Femur Across Adulthood,” Bone, 40(1), pp. 211–217. [CrossRef] [PubMed]
Pivonka, P. , Zimak, J. , Smith, D. W. , Gardiner, B. S. , Dunstan, C. R. , Sims, N. A. , Martin, T. J. , and Mundy, G. R. , 2008, “ Model Structure and Control of Bone Remodeling: A Theoretical Study,” Bone, 43(2), pp. 249–263. [CrossRef] [PubMed]
Holland, J. H. , 1975, Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, MI.
Taylor, M. , Tanner, K. E. , Freeman, M. A. R. , and Yettram, A. L. , 1995, “ Cancellous Bone Stress Surrounding the Femoral Component of a Hip Prosthesis: An Elastic-Plastic Finite Element Analysis,” Med. Eng. Phys., 17(7), pp. 544–550. [CrossRef] [PubMed]
Peters, C. L. , Bachus, K. N. , Craig, M. A. , and Higginbotham, T. O. , 2001, “ The Effect of Femoral Prosthesis Design on Cement Strain in Cemented Total Hip Arthroplasty,” J. Arthroplasty, 16(2), pp. 216–224. [CrossRef] [PubMed]
Kayabasi, O. , and Ekici, B. , 2008, “ Probabilistic Design of a Newly Designed Cemented Hip Prosthesis Using Finite Element Method,” Mater. Des., 29(5), pp. 963–971. [CrossRef]
Lindalen, E. , Dahl, J. , Nordsletten, L. , Snorrason, F. , Hovik, O. , and Röhrl, S. , 2012, “ Reverse Hybrid and Cemented Hip Replacement Compared Using Radiostereometry and Dual-Energy X-Ray Absorptiometry: 43 Hips Followed for 2 Years in a Prospective Trial,” Acta Orthop., 83(6), pp. 592–600. [CrossRef] [PubMed]
Stucinskas, J. , Clauss, M. , Tarasevicius, S. , Wingstrand, H. , and Ilchmann, T. , 2012, “ Long-Term Femoral Bone Remodeling After Cemented Hip Arthroplasty With the Müller Straight Stem in the Operated and Nonoperated Femora,” J. Arthroplasty, 27(6), pp. 927–933. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 1

Radiography of a cemented total hip arthroplasty

Grahic Jump Location
Fig. 2

Linear law for bone growth/absorption

Grahic Jump Location
Fig. 3

Pseudocode for the GA codification

Grahic Jump Location
Fig. 4

Flowchart of the optimization procedure

Grahic Jump Location
Fig. 5

Three-dimensional model considering (a) loads and boundary conditions and (b) femur three-dimensional model

Grahic Jump Location
Fig. 6

Mass evolution for 1000 days

Grahic Jump Location
Fig. 7

Gradual density variation on a three-dimensional femur: (a) initial density distribution and (b) density distribution after bone remodeling

Grahic Jump Location
Fig. 8

Prosthesis parameters to be optimized

Grahic Jump Location
Fig. 9

Convergence history

Grahic Jump Location
Fig. 10

Comparison between prosthesis: (a) commercial prosthesis and (b) optimized prosthesis

Grahic Jump Location
Fig. 11

Mass evolution for 1000 days, comparison between prosthesis



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In