Research Papers

Biomechanics of the Posterior Eye: A Critical Role in Health and Disease

[+] Author and Article Information
Ian C. Campbell

Wallace H. Coulter Department of
Biomedical Engineering,
Georgia Institute of Technology and
Emory University,
Atlanta, GA 30332;
Rehabilitation Research and
Development Center of Excellence,
Atlanta VA Medical Center,
1670 Clairmont Road,
Decatur, GA 30032

Baptiste Coudrillier

Wallace H. Coulter Department of
Biomedical Engineering,
Georgia Institute of Technology and Emory University,
Atlanta, GA 30332

C. Ross Ethier

Wallace H. Coulter Department of
Biomedical Engineering,
Georgia Institute of Technology and Emory University,
Atlanta, GA 30332;
Rehabilitation Research and
Development Center of Excellence,
Atlanta VA Medical Center,
1670 Clairmont Road,
Decatur, GA 30032;
Department of Ophthalmology,
School of Medicine,
Emory University,
Atlanta, GA 30322;
Department of Bioengineering,
Imperial College London,
London SW7 2AZ, UK
e-mail: ross.ethier@bme.gatech.edu

1Corresponding author.

Contributed by the Bioengineering Division of ASME for publication in the Journal of Biomechanical Engineering. Manuscript received September 10, 2013; final manuscript received December 15, 2013; accepted manuscript posted December 19, 2013; published online February 5, 2014. Editor: Victor H. Barocas.

J Biomech Eng 136(2), 021005 (Feb 05, 2014) (19 pages) Paper No: BIO-13-1422; doi: 10.1115/1.4026286 History: Received September 10, 2013; Revised December 15, 2013; Accepted December 19, 2013

The posterior eye is a complex biomechanical structure. Delicate neural and vascular tissues of the retina, choroid, and optic nerve head that are critical for visual function are subjected to mechanical loading from intraocular pressure, intraocular and extraorbital muscles, and external forces on the eye. The surrounding sclera serves to counteract excessive deformation from these forces and thus to create a stable biomechanical environment for the ocular tissues. Additionally, the eye is a dynamic structure with connective tissue remodeling occurring as a result of aging and pathologies such as glaucoma and myopia. The material properties of these tissues and the distribution of stresses and strains in the posterior eye is an area of active research, relying on a combination of computational modeling, imaging, and biomechanical measurement approaches. Investigators are recognizing the increasing importance of the role of the collagen microstructure in these material properties and are undertaking microstructural measurements to drive microstructurally-informed models of ocular biomechanics. Here, we review notable findings and the consensus understanding on the biomechanics and microstructure of the posterior eye. Results from computational and numerical modeling studies and mechanical testing of ocular tissue are discussed. We conclude with some speculation as to future trends in this field.

Copyright © 2014 by ASME
Your Session has timed out. Please sign back in to continue.


Bourne, R., Price, H., Taylor, H., Leasher, J., Keeffe, J., Glanville, J., Sieving, P. C., Khairallah, M., Wong, T. Y., Zheng, Y., Mathew, A., Katiyar, S., Mascarenhas, M., Stevens, G. A., Resnikoff, S., Gichuhi, S., Naidoo, K., Wallace, D., Kymes, S., Peters, C., Pesudovs, K., Braithwaite, T., Limburg, H., and Global Burden of Disease Vision Loss Expert Group, 2013, “New Systematic Review Methodology for Visual Impairment and Blindness for the 2010 Global Burden of Disease Study,” Ophthalmic Epidemiol., 20(1), pp. 33–39. [CrossRef] [PubMed]
Vu, H. T., Keeffe, J. E., McCarty, C. A., and Taylor, H. R., 2005, “Impact of Unilateral and Bilateral Vision Loss on Quality of Life,” Br. J. Ophthalmol., 89(3), pp. 360–363. [CrossRef] [PubMed]
Brown, M. M., Brown, G. C., Sharma, S., and Busbee, B., 2003, “Quality of Life Associated With Visual Loss: A Time Tradeoff Utility Analysis Comparison With Medical Health States,” Ophthalmology, 110(6), pp. 1076–1081. [CrossRef] [PubMed]
Eichenbaum, J. W., 2012, “Geriatric Vision Loss Due to Cataracts, Macular Degeneration, and Glaucoma,” Mt. Sinai J. Med., 79(2), pp. 276–294. [CrossRef] [PubMed]
Limited, A. E. P., 2010, “Global Economic Cost of Visual Impairment.” Available at: http://www.amdalliance.org/amdalliance/AMDAlliance/global-economic-cost-of-visual-impairment-2010
Mariotti, S. P., 2012, “Global Data on Visual Impairments 2010,” World Health Organization.
Quigley, H. A. and Broman, A. T., 2006, “The Number of People With Glaucoma Worldwide in 2010 and 2020,” Br. J. Ophthalmol., 90(3), pp. 262–267. [CrossRef] [PubMed]
Vitale, S., Sperduto, R. D., and Ferris, F. L.III, 2009, “Increased Prevalence of Myopia in the United States Between 1971–1972 and 1999–2004,” Arch. Ophthalmol. (Chicago), 127(12), pp. 1632–1639. [CrossRef]
Vitale, S., Ellwein, L., Cotch, M. F., Ferris, F. L.III, and Sperduto, R., 2008, “Prevalence of Refractive Error in the United States, 1999–2004,” Arch. Ophthalmol. (Chicago), 126(8), pp. 1111–1119. [CrossRef]
Morgan, I. G., Ohno-Matsui, K., and Saw, S. M., 2012, “Myopia,” Lancet, 379(9827), pp. 1739–1748. [CrossRef] [PubMed]
Ethier, C. R., Johnson, M., and Ruberti, J., 2004, “Ocular Biomechanics and Biotransport,” Ann. Rev. Biomed. Eng., 6, pp. 249–273. [CrossRef]
Berdahl, J. P., Fautsch, M. P., Stinnett, S. S., and Allingham, R. R., 2008, “Intracranial Pressure in Primary Open Angle Glaucoma, Normal Tension Glaucoma, and Ocular Hypertension: A Case-Control Study,” Invest. Ophthalmol. Visual Sci., 49(12), pp. 5412–5418. [CrossRef]
Morgan, W. H., Yu, D. Y., and Balaratnasingam, C., 2008, “The Role of Cerebrospinal Fluid Pressure in Glaucoma Pathophysiology: The Dark Side of the Optic Disc,” J. Glaucoma, 17(5), pp. 408–413. [CrossRef] [PubMed]
Alamouti, B. and Funk, J., 2003, “Retinal Thickness Decreases With Age: An OCT Study,” Br. J. Ophthalmol., 87(7), pp. 899–901. [CrossRef] [PubMed]
Curcio, C. A., Sloan, K. R., Kalina, R. E., and Hendrickson, A. E., 1990, “Human Photoreceptor Topography,” J. Comp. Neurol., 292(4), pp. 497–523. [CrossRef] [PubMed]
Flugel-Koch, C., May, C. A., and Lutjen-Drecoll, E., 1996, “Presence of a Contractile Cell Network in the Human Choroid,” Ophthalmologica, 210(5), pp. 296–302. [CrossRef] [PubMed]
May, C. A., Hayreh, S. S., Furuyoshi, N., Ossoinig, K., Kaufman, P. L., and Lutjen-Drecoll, E., 1997, “Choroidal Ganglion Cell Plexus and Retinal Vasculature in Monkeys With Laser-Induced Glaucoma,” Ophthalmologica, 211(3), pp. 161–171. [CrossRef] [PubMed]
May, C. A., 2003, “Nonvascular Smooth Muscle Alpha-Actin Positive Cells in the Choroid of Higher Primates,” Curr. Eye Res., 27(1), pp. 1–6. [CrossRef] [PubMed]
Nickla, D. L. and Wallman, J., 2010, “The Multifunctional Choroid,” Prog. Retin. Eye Res., 29(2), pp. 144–168. [CrossRef] [PubMed]
Coleman, D. J. and Trokel, S., 1969, “Direct-Recorded Intraocular Pressure Variations in a Human Subject,” Arch. Ophthalmol. (Chicago), 82(5), pp. 637–640. [CrossRef]
Dastiridou, A. I., Tsironi, E. E., Tsilimbaris, M. K., Ginis, H., Karyotakis, N., Cholevas, P., Androudi, S., and Pallikaris, I. G., 2013, “Ocular Rigidity, Outflow Facility, Ocular Pulse Amplitude, and Pulsatile Ocular Blood Flow in Open-Angle Glaucoma: A Manometric Study,” Invest. Ophthalmol. Visual Sci., 54(7), pp. 4571–4577. [CrossRef]
Downs, J. C., Burgoyne, C. F., Seigfreid, W. P., Reynaud, J. F., Strouthidis, N. G., and Sallee, V., 2011, “24-Hour IOP Telemetry in the Nonhuman Primate: Implant System Performance and Initial Characterization of IOP at Multiple Timescales,” Invest. Ophthalmol. Visual Sci., 52(10), pp. 7365–7375. [CrossRef]
Bengtsson, B. and Heijl, A., 2005, “A Long-Term Prospective Study of Risk Factors for Glaucomatous Visual Field Loss in Patients With Ocular Hypertension,” J. Glaucoma, 14(2), pp. 135–138. [CrossRef] [PubMed]
Heijl, A., Leske, M. C., Bengtsson, B., Hyman, L., and Hussein, M., 2002, “Reduction of Intraocular Pressure and Glaucoma Progression: Results From the Early Manifest Glaucoma Trial,” Arch. Ophthalmol. (Chicago), 120(10), pp. 1268–1279. [CrossRef]
Leske, M. C., Heijl, A., Hussein, M., Bengtsson, B., Hyman, L., and Komaroff, E., 2003, “Factors for Glaucoma Progression and the Effect of Treatment: The Early Manifest Glaucoma Trial,” Arch. Ophthalmol. (Chicago), 121(1), pp. 48–56. [CrossRef]
Weinreb, R. N. and Khaw, P. T., 2004, “Primary Open-Angle Glaucoma,” Lancet, 363(9422), pp. 1711–1720. [CrossRef] [PubMed]
Anderson, D. R., Drance, S. M., Schulzer, M., and Collaborative Normal-Tension Glaucoma Study, G., 2001, “Natural History of Normal-Tension Glaucoma,” Ophthalmology, 108(2), pp. 247–253. [CrossRef] [PubMed]
AGIS, 2000, “The Advanced Glaucoma Intervention Study (AGIS): 7. The Relationship Between Control of Intraocular Pressure and Visual Field Deterioration. The AGIS Investigators,” Am. J. Ophthalmol., 130(4), pp. 429–440. [CrossRef] [PubMed]
Sommer, A., Tielsch, J. M., Katz, J., Quigley, H. A., Gottsch, J. D., Javitt, J., and Singh, K., 1991, “Relationship Between Intraocular Pressure and Primary Open Angle Glaucoma Among White and Black Americans. The Baltimore Eye Survey,” Arch. Ophthalmol. (Chicago), 109(8), pp. 1090–1095. [CrossRef]
Gordon, M. O., Beiser, J. A., Brandt, J. D., Heuer, D. K., Higginbotham, E. J., Johnson, C. A., Keltner, J. L., Miller, J. P., Parrish, R. K.II, Wilson, M. R., and Kass, M. A., 2002, “The Ocular Hypertension Treatment Study: Baseline Factors That Predict the Onset of Primary Open-Angle Glaucoma,” Arch. Ophthalmol. (Chicago), 120(6), pp. 714–720. [CrossRef]
Cherecheanu, A. P., Garhofer, G., Schmidl, D., Werkmeister, R., and Schmetterer, L., 2013, “Ocular Perfusion Pressure and Ocular Blood Flow in Glaucoma,” Curr. Opin. Pharmacol., 13(1), pp. 36–42. [CrossRef] [PubMed]
Burgoyne, C. F., Downs, J. C., Bellezza, A. J., Suh, J. K. F., and Hart, R. T., 2005, “The Optic Nerve Head as a Biomechanical Structure: A New Paradigm for Understanding the Role of IOP-Related Stress and Strain in the Pathophysiology of Glaucomatous Optic Nerve Head Damage,” Prog. Retin. Eye Res., 24(1), pp. 39–73. [CrossRef] [PubMed]
Hernandez, M. R., 2000, “The Optic Nerve Head in Glaucoma: Role of Astrocytes in Tissue Remodeling,” Prog Retin. Eye Res., 19(3), pp. 297–321. [CrossRef] [PubMed]
Anderson, D. R. and Hendrickson, A., 1974, “Effect of Intraocular Pressure on Rapid Axoplasmic Transport in Monkey Optic Nerve,” Invest. Ophthalmol., 13(10), pp. 771–783. [PubMed]
Rada, J. A., Shelton, S., and Norton, T. T., 2006, “The Sclera and Myopia,” Exp. Eye Res., 82(2), pp. 185–200. [CrossRef] [PubMed]
Gilmartin, B., 2004, “Myopia: Precedents for Research in the Twenty-First Century,” Clin. Exp. Ophthalmol., 32(3), pp. 305–324. [CrossRef]
French, A. N., Ashby, R. S., Morgan, I. G., and Rose, K. A., 2013, “Time Outdoors and the Prevention of Myopia,” Exp. Eye Res., 114, pp. 58–68. [CrossRef] [PubMed]
Pardue, M. T., Stone, R. A., and Iuvone, P. M., 2013, “Investigating Mechanisms of Myopia in Mice,” Exp. Eye Res., 114, pp. 96–105. [CrossRef] [PubMed]
Jung, S. K., Lee, J. H., Kakizaki, H., and Jee, D., 2012, “Prevalence of Myopia and Its Association With Body Stature and Educational Level in 19-Year-Old Male Conscripts in Seoul, South Korea,” Invest. Ophthalmol. Visual Sci., 53(9), pp. 5579–5583. [CrossRef]
Saw, S. M., 2003, “A Synopsis of the Prevalence Rates and Environmental Risk Factors for Myopia,” Clin. Exp. Optom., 86(5), pp. 289–294. [CrossRef] [PubMed]
Feldkaemper, M. and Schaeffel, F., 2013, “An Updated View on the Role of Dopamine in Myopia,” Exp. Eye Res., 114, pp. 106–119. [CrossRef] [PubMed]
Norton, T. T. and Siegwart, J. T., Jr., 2013, “Light Levels, Refractive Development, and Myopia—A Speculative Review,” Exp. Eye Res., 114, pp. 48–57. [CrossRef] [PubMed]
Siegwart, J. T., Jr., and Norton, T. T., 1999, “Regulation of the Mechanical Properties of Tree Shrew Sclera by the Visual Environment,” Vision Res., 39(2), pp. 387–407. [CrossRef] [PubMed]
Wallman, J., Wildsoet, C., Xu, A., Gottlieb, M. D., Nickla, D. L., Marran, L., Krebs, W., and Christensen, A. M., 1995, “Moving the Retina: Choroidal Modulation of Refractive State,” Vision Res., 35(1), pp. 37–50. [CrossRef] [PubMed]
Summers, J. A., 2013, “The Choroid as a Sclera Growth Regulator,” Exp. Eye Res., 114, pp. 120–127. [CrossRef] [PubMed]
Campochiaro, P. A., 2013, “Ocular Neovascularization,” J. Mol. Med., 91(3), pp. 311–321. [CrossRef] [PubMed]
Phillips, J. R. and McBrien, N. A., 2004, “Pressure-Induced Changes in Axial Eye Length of Chick and Tree Shrew: Significance of Myofibroblasts in the Sclera,” Invest. Ophthalmol. Visual Sci., 45(3), pp. 758–763. [CrossRef]
Cui, W., Bryant, M. R., Sweet, P. M., and McDonnell, P. J., 2004, “Changes in Gene Expression in Response to Mechanical Strain in Human Scleral Fibroblasts,” Exp. Eye Res., 78(2), pp. 275–284. [CrossRef] [PubMed]
Tan, J. C., Kalapesi, F. B., and Coroneo, M. T., 2006, “Mechanosensitivity and the Eye: Cells Coping With the Pressure,” Br. J. Ophthalmol., 90(3), pp. 383–388. [CrossRef] [PubMed]
Wong, T. Y., Klein, B. E., and Klein, R., 2000, “The Prevalence and 5-Year Incidence of Ocular Trauma. The Beaver Dam Eye Study,” Ophthalmology, 107(12), pp. 2196–2202. [CrossRef] [PubMed]
Bisplinghoff, J. A., McNally, C., Manoogian, S. J., and Duma, S. M., 2009, “Dynamic Material Properties of the Human Sclera,” J. Biomech., 42(10), pp. 1493–1497. [CrossRef] [PubMed]
Kennedy, E. A., Inzana, J. A., McNally, C., Duma, S. M., Depinet, P. J., Sullenberger, K. H., Morgan, C. R., and Brozoski, F. T., 2007, “Development and Validation of a Synthetic Eye and Orbit for Estimating the Potential for Globe Rupture Due to Specific Impact Conditions,” Stapp Car Crash Journal, 51, pp. 381–400. [PubMed]
Bhardwaj, R., Ziegler, K., Seo, J. H., Ramesh, K. T., and Nguyen, T. D., 2013, “A Computational Model of Blast Loading on the Human Eye,” Biomech. Model. Mechanobiol., (ePublished ahead of print). [CrossRef]
Esposito, L., Clemente, C., Bonora, N., and Rossi, T., 2013, “Modelling Human Eye Under Blast Loading,” Comput. Methods Biomech. Biomed. Eng., (ePublished ahead of print). [CrossRef]
Rossi, T., Boccassini, B., Esposito, L., Clemente, C., Iossa, M., Placentino, L., and Bonora, N., 2012, “Primary Blast Injury to the Eye and Orbit: Finite Element Modeling,” Invest. Ophthalmol. Visual Sci., 53(13), pp. 8057–8066. [CrossRef]
Duma, S. M., Bisplinghoff, J. A., Senge, D. M., McNally, C., and Alphonse, V. D., 2012, “Evaluating the Risk of Eye Injuries: Intraocular Pressure During High Speed Projectile Impacts,” Curr. Eye Res., 37(1), pp. 43–49. [CrossRef] [PubMed]
Duma, S. M., Ng, T. P., Kennedy, E. A., Stitzel, J. D., Herring, I. P., and Kuhn, F., 2005, “Determination of Significant Parameters for Eye Injury Risk From Projectiles,” J Trauma, 59(4), pp. 960–964. [CrossRef] [PubMed]
Jonas, J. B. and Holbach, L., 2005, “Central Corneal Thickness and Thickness of the Lamina Cribrosa in Human Eyes,” Invest. Ophthalmol. Visual Sci., 46(4), pp. 1275–1279. [CrossRef]
Quigley, H. A., 1999, “Neuronal Death in Glaucoma,” Prog. Retin. Eye Res., 18(1), pp. 39–57. [CrossRef] [PubMed]
Dandona, L., Quigley, H. A., Brown, A. E., and Enger, C., 1990, “Quantitative Regional Structure of the Normal Human Lamina Cribrosa. A Racial Comparison,” Arch. Ophthalmol. (Chicago), 108(3), pp. 393–398. [CrossRef]
Goldbaum, M. H., Jeng, S. Y., Logemann, R., and Weinreb, R. N., 1989, “The Extracellular Matrix of the Human Optic Nerve,” Arch. Ophthalmol. (Chicago), 107(8), pp. 1225–1231. [CrossRef]
Thale, A., Tillmann, B., and Rochels, R., 1996, “Scanning Electron Microscopy Studies of the Collagen Architecture of the Human Lamina Cribrosa: Normal and Pathological Findings,” Ophthalmologica, 210(3), pp. 142–147. [CrossRef] [PubMed]
Hernandez, M. R., Luo, X. X., Igoe, F., and Neufeld, A. H., 1987, “Extracellular Matrix of the Human Lamina Cribrosa,” Am. J. Ophthalmol., 104(6), pp. 567–576. [PubMed]
Jonas, J. B., Berenshtein, E., and Holbach, L., 2003, “Anatomic Relationship Between Lamina Cribrosa, Intraocular Space, and Cerebrospinal Fluid Space,” Invest. Ophthalmol. Visual Sci., 44(12), pp. 5189–5195. [CrossRef]
Quigley, H. A., Hohman, R. M., Addicks, E. M., Massof, R. W., and Green, W. R., 1983, “Morphologic Changes in the Lamina Cribrosa Correlated With Neural Loss in Open-Angle Glaucoma,” Am. J. Ophthalmol., 95(5), pp. 673–691. [PubMed]
Ethier, C. R., 2006, “Scleral Biomechanics and Glaucoma—A Connection?,” Can. J. Ophthalmol., 41(1), pp 9–14 [CrossRef] [PubMed]
Hernandez, M. R. and Pena, J. D., 1997, “The Optic Nerve Head in Glaucomatous Optic Neuropathy,” Arch. Ophthalmol. (Chicsgo), 115(3), pp. 389–395. [CrossRef]
Bellezza, A. J., Hart, R. T., and Burgoyne, C. F., 2000, “The Optic Nerve Head as a Biomechanical Structure: Initial Finite Element Modeling,” Invest. Ophthalmol. Visual Sci., 41(10), pp. 2991–3000.
Fechtner, R. D. and Weinreb, R. N., 1994, “Mechanisms of Optic Nerve Damage in Primary Open Angle Glaucoma,” Surv, Ophthalmol, 39(1), pp. 23–42. [CrossRef]
Flammer, J., Orgul, S., Costa, V. P., Orzalesi, N., Krieglstein, G. K., Serra, L. M., Renard, J. P., and Stefansson, E., 2002, “The Impact of Ocular Blood Flow in Glaucoma,” Prog, Retin, Eye Res, 21(4), pp. 359–393. [CrossRef]
Su, W. W., Cheng, S. T., Ho, W. J., Tsay, P. K., Wu, S. C., and Chang, S. H. L., 2008, “Glaucoma is Associated With Peripheral Vascular Endothelial Dysfunction,” Ophthalmology, 115(7), pp. 1173–1178. [CrossRef] [PubMed]
Rogers, R. S., Dharsee, M., Ackloo, S., and Flanagan, J. G., 2012, “Proteomics Analyses of Activated Human Optic Nerve Head Lamina Cribrosa Cells Following Biomechanical Strain,” Invest, Ophthalmol, Visual Sci., 53(7), pp. 3806–3816. [CrossRef]
Rogers, R. S., Dharsee, M., Ackloo, S., Sivak, J. M., and Flanagan, J. G., 2012, “Proteomics Analyses of Human Optic Nerve Head Astrocytes Following Biomechanical Strain,” Mol.Cell. Proteomics, 11(2), p. 012302. [CrossRef] [PubMed]
Kirwan, R. P., Crean, J. K., Fenerty, C. H., Clark, A. F., and O'Brien, C. J., 2004, “Effect of Cyclical Mechanical Stretch and Exogenous Transforming Growth Factor-Beta1 on Matrix Metalloproteinase-2 Activity in Lamina Cribrosa Cells From the Human Optic Nerve Head,” J. Glaucoma, 13(4), pp. 327–334. [CrossRef] [PubMed]
Hernandez, M. R., Andrzejewska, W. M., and Neufeld, A. H., 1990, “Changes in the Extracellular Matrix of the Human Optic Nerve Head in Primary Open-Angle Glaucoma,” Am. J. Ophthalmol., 109(2), pp. 180–188. [PubMed]
Quigley, H. A., Dorman-Pease, M. E., and Brown, A. E., 1991, “Quantitative Study of Collagen and Elastin of the Optic Nerve Head and Sclera in Human and Experimental Monkey Glaucoma,” Curr. Eye Res., 10(9), pp. 877–888. [CrossRef] [PubMed]
Quigley, H. A., Brown, A., and Dorman-Pease, M. E., 1991, “Alterations in Elastin of the Optic Nerve Head in Human and Experimental Glaucoma,” Br. J. Ophthalmol., 75(9), pp. 552–557. [CrossRef] [PubMed]
Hernandez, M. R., 1992, “Ultrastructural Immunocytochemical Analysis of Elastin in the Human Lamina Cribrosa. Changes in Elastic Fibers in Primary Open-Angle Glaucoma,” Invest. Ophthalmol. Visual Sci, 33(10), pp. 2891–2903.
Fukuchi, T., Sawaguchi, S., Hara, H., Shirakashi, M., and Iwata, K., 1992, “Extracellular Matrix Changes of the Optic Nerve Lamina Cribrosa in Monkey Eyes With Experimentally Chronic Glaucoma,” Albrecht von Graefes Arch. Klin. Exp. Ophthalmol., 230(5), pp. 421–427. [CrossRef]
Morrison, J. C., Dorman-Pease, M. E., Dunkelberger, G. R., and Quigley, H. A., 1990, “Optic Nerve Head Extracellular Matrix in Primary Optic Atrophy and Experimental Glaucoma,” Arch Ophthalmol. (Chicago), 108(7), pp. 1020–1024. [CrossRef]
Fukuchi, T., Sawaguchi, S., Yue, B. Y., Iwata, K., Hara, H., and Kaiya, T., 1994, “Sulfated Proteoglycans in the Lamina Cribrosa of Normal Monkey Eyes and Monkey Eyes With Laser-Induced Glaucoma,” Exp. Eye Res., 58(2), pp. 231–243. [CrossRef] [PubMed]
Levy, N. S. and Crapps, E. E., 1984, “Displacement of Optic Nerve Head in Response to Short-Term Intraocular Pressure Elevation in Human Eyes,” Arch. Ophthalmol. (Chicago), 102(5), pp. 782–786. [CrossRef]
Zeimer, R. C. and Ogura, Y., 1989, “The Relation Between Glaucomatous Damage and Optic Nerve Head Mechanical Compliance,” Arch. Ophthalmol. (Chicago), 107(8), pp. 1232–1234. [CrossRef]
Albon, J., Purslow, P. P., Karwatowski, W. S., and Easty, D. L., 2000, “Age Related Compliance of the Lamina Cribrosa in Human Eyes,” Br. J. Ophthalmol., 84(3), pp. 318–323. [CrossRef] [PubMed]
Yan, D. B., Coloma, F. M., Metheetrairut, A., Trope, G. E., Heathcote, J. G., and Ethier, C. R., 1994, “Deformation of the Lamina Cribrosa by Elevated Intraocular Pressure,” Br. J. Ophthalmol., 78(8), pp. 643–648. [CrossRef] [PubMed]
Brown, D. J., Morishige, N., Neekhra, A., Minckler, D. S., and Jester, J. V., 2007, “Application of Second Harmonic Imaging Microscopy to Assess Structural Changes in Optic Nerve Head Structure Ex Vivo,” J. Biomed. Opt., 12(2), p. 024029. [CrossRef] [PubMed]
Bellezza, A. J., Rintalan, C. J., Thompson, H. W., Downs, J. C., Hart, R. T., and Burgoyne, C. F., 2003, “Anterior Scleral Canal Geometry in Pressurised (IOP 10) and Non-Pressurised (IOP 0) Normal Monkey Eyes,” Br. J. Ophthalmol., 87(10), pp. 1284–1290. [CrossRef] [PubMed]
Burgoyne, C. F., Downs, J. C., Bellezza, A. J., and Hart, R. T., 2004, “Three-Dimensional Reconstruction of Normal and Early Glaucoma Monkey Optic Nerve Head Connective Tissues,” Invest. Ophthalmol. Visual Sci., 45(12), pp. 4388–4399. [CrossRef]
Yang, H., Downs, J. C., Girkin, C., Sakata, L., Bellezza, A., Thompson, H., and Burgoyne, C. F., 2007, “3-D Histomorphometry of the Normal and Early Glaucomatous Monkey Optic Nerve Head: Lamina Cribrosa and Peripapillary Scleral Position and Thickness,” Invest. Ophthalmol. Visual Sci., 48(10), pp. 4597–4607. [CrossRef]
Yang, H., Williams, G., Downs, J. C., Sigal, I. A., Roberts, M. D., Thompson, H., and Burgoyne, C. F., 2011, “Posterior (Outward) Migration of the Lamina Cribrosa and Early Cupping in Monkey Experimental Glaucoma,” Invest. Ophthalmol. Visual Sci., 52(10), pp. 7109–7121. [CrossRef]
Kim, T. W., Kagemann, L., Girard, M. J., Strouthidis, N. G., Sung, K. R., Leung, C. K., Schuman, J. S., and Wollstein, G., 2013, “Imaging of the Lamina Cribrosa in Glaucoma: Perspectives of Pathogenesis and Clinical Applications,” Curr. Eye Res., (ePublished ahead of print). [CrossRef]
Strouthidis, N. G., Grimm, J., Williams, G. A., Cull, G. A., Wilson, D. J., and Burgoyne, C. F., 2010, “A Comparison of Optic Nerve Head Morphology Viewed by Spectral Domain Optical Coherence Tomography and by Serial Histology,” Invest. Ophthalmol. Visual Sci., 51(3), pp. 1464–1474. [CrossRef]
Lee, E. J., Kim, T. W., Weinreb, R. N., Park, K. H., Kim, S. H., and Kim, D. M., 2011, “Visualization of the Lamina Cribrosa Using Enhanced Depth Imaging Spectral-Domain Optical Coherence Tomography,” Am. J. Ophthalmol., 152(1), pp. 87–95. [CrossRef] [PubMed]
Yang, H., Qi, J., Hardin, C., Gardiner, S. K., Strouthidis, N. G., Fortune, B., and Burgoyne, C. F., 2012, “Spectral-Domain Optical Coherence Tomography Enhanced Depth Imaging of the Normal and Glaucomatous Nonhuman Primate Optic Nerve Head,” Invest. Ophthalmol. Visual Sci., 53(1), pp. 394–405. [CrossRef]
Ivers, K. M., Li, C., Patel, N., Sredar, N., Luo, X., Queener, H., Harwerth, R. S., and Porter, J., 2011, “Reproducibility of Measuring Lamina Cribrosa Pore Geometry in Human and Nonhuman Primates With In Vivo Adaptive Optics Imaging,” Invest. Ophthalmol. Visual Sci., 52(8), pp. 5473–5480. [CrossRef]
Girard, M. J., Strouthidis, N. G., Ethier, C. R., and Mari, J. M., 2011, “Shadow Removal and Contrast Enhancement in Optical Coherence Tomography Images of the Human Optic Nerve Head,” Invest. Ophthalmol. Visual Sci., 52(10), pp. 7738–7748. [CrossRef]
Nadler, Z., Wang, B., Wollstein, G., Nevins, J. E., Ishikawa, H., Kagemann, L., Sigal, I. A., Ferguson, R. D., Hammer, D. X., Grulkowski, I., Liu, J. J., Kraus, M. F., Lu, C. D., Hornegger, J., Fujimoto, J. G., and Schuman, J. S., 2013, “Automated Lamina Cribrosa Microstructural Segmentation in Optical Coherence Tomography Scans of Healthy and Glaucomatous Eyes,” Biomed. Opt. Express, 4(11), pp. 2596–2608. [CrossRef] [PubMed]
Girard, M. J., Strouthidis, N. G., Desjardins, A., Mari, J. M., and Ethier, C. R., 2013, “In Vivo Optic Nerve Head Biomechanics: Performance Testing of a Three-Dimensional Tracking Algorithm,” J. R. Soc., Interface, 10(87), p. 20130459. [CrossRef]
Dongqi, H. and Zeqin, R., 1999, “A Biomathematical Model for Pressure-Dependent Lamina Cribrosa Behavior,” J. Biomech., 32(6), pp. 579–584. [CrossRef] [PubMed]
Edwards, M. E. and Good, T. A., 2001, “Use of a Mathematical Model to Estimate Stress and Strain During Elevated Pressure Induced Lamina Cribrosa Deformation,” Curr. Eye Res., 23(3), pp. 215–225. [CrossRef] [PubMed]
Sander, E. A., Downs, J. C., Hart, R. T., Burgoyne, C. F., and Nauman, E. A., 2006, “A Cellular Solid Model of the Lamina Cribrosa: Mechanical Dependence on Morphology,” ASME J. Biomech. Eng., 128(6), pp. 879–889. [CrossRef]
Sigal, I. A., Flanagan, J. G., and Ethier, C. R., 2005, “Factors Influencing Optic Nerve Head Biomechanics,” Invest. Ophthalmol. Visual Sci., 46(11), pp. 4189–4199. [CrossRef]
Sigal, I. A. and Grimm, J. L., 2012, “A Few Good Responses: Which Mechanical Effects of IOP on the ONH to Study?,” Invest. Ophthalmol. Visual Sci., 53(7), pp. 4270–4278. [CrossRef]
Sigal, I. A., Yang, H., Roberts, M. D., Burgoyne, C. F., and Downs, J. C., 2011, “IOP-Induced Lamina Cribrosa Displacement and Scleral Canal Expansion: An Analysis of Factor Interactions Using Parameterized Eye-Specific Models,” Invest. Ophthalmol. Visual Sci., 52(3), pp. 1896–1907. [CrossRef]
Norman, R. E., Flanagan, J. G., Sigal, I. A., Rausch, S. M., Tertinegg, I., and Ethier, C. R., 2011, “Finite Element Modeling of the Human Sclera: Influence on Optic Nerve Head Biomechanics and Connections With Glaucoma,” Exp. Eye Res., 93(1), pp. 4–12. [CrossRef] [PubMed]
Sigal, I. A., Flanagan, J. G., Tertinegg, I., and Ethier, C. R., 2009, “Modeling Individual-Specific Human Optic Nerve Head Biomechanics. Part I: IOP-Induced Deformations and Influence of Geometry,” Biomech. Model. Mechanobiol., 8(2), pp. 85–98. [CrossRef] [PubMed]
Roberts, M. D., Liang, Y., Sigal, I. A., Grimm, J., Reynaud, J., Bellezza, A., Burgoyne, C. F., and Downs, J. C., 2010, “Correlation Between Local Stress and Strain and Lamina Cribrosa Connective Tissue Volume Fraction in Normal Monkey Eyes,” Invest. Ophthalmol. Visual Sci., 51(1), pp. 295–307. [CrossRef]
Roberts, M. D., Grau, V., Grimm, J., Reynaud, J., Bellezza, A. J., Burgoyne, C. F., and Downs, J. C., 2009, “Remodeling of the Connective Tissue Microarchitecture of the Lamina Cribrosa in Early Experimental Glaucoma,” Invest. Ophthalmol. Visual Sci., 50(2), pp. 681–690. [CrossRef]
Downs, J. C., Roberts, M. D., Burgoyne, C. F., and Hart, R. T., 2009, “Multiscale Finite Element Modeling of the Lamina Cribrosa Microarchitecture in the Eye,” Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4277–4280. [CrossRef]
Grytz, R., Sigal, I. A., Ruberti, J. W., Meschke, G., and Downs, J. C., 2012, “Lamina Cribrosa Thickening in Early Glaucoma Predicted by a Microstructure Motivated Growth and Remodeling Approach,” Mech. Mater., 44, pp. 99–109. [CrossRef] [PubMed]
Elsheikh, A., Geraghty, B., Alhasso, D., Knappett, J., Campanelli, M., and Rama, P., 2010, “Regional Variation in the Biomechanical Properties of the Human Sclera,” Exp. Eye Res., 90(5), pp. 624–633. [CrossRef] [PubMed]
McBrien, N. A., Jobling, A. I., and Gentle, A., 2009, “Biomechanics of the Sclera in Myopia: Extracellular and Cellular Factors,” Optom. Visual Sci., 86(1), pp. E23–30. [CrossRef]
Girard, M. J., Suh, J. K., Hart, R. T., Burgoyne, C. F., and Downs, J. C., 2007, “Effects of Storage Time on the Mechanical Properties of Rabbit Peripapillary Sclera After Enucleation,” Curr. Eye Res., 32(5), pp. 465–470. [CrossRef] [PubMed]
Meek, K. M. and Fullwood, N. J., 2001, “Corneal and Scleral Collagens—A Microscopist's Perspective,” Micron, 32(3), pp. 261–272. [CrossRef] [PubMed]
Keeley, F. W., Morin, J. D., and Vesely, S., 1984, “Characterization of Collagen From Normal Human Sclera,” Exp. Eye Res., 39(5), pp. 533–542. [CrossRef] [PubMed]
Watson, P. G. and Young, R. D., 2004, “Scleral Structure, Organisation and Disease. A Review,” Exp. Eye Res., 78(3), pp. 609–623. [CrossRef] [PubMed]
Marshall, G. E., Konstas, A. G., and Lee, W. R., 1993, “Collagens in the Aged Human Macular Sclera,” Curr. Eye Res., 12(2), pp. 143–153. [CrossRef] [PubMed]
Komai, Y. and Ushiki, T., 1991, “The Three-Dimensional Organization of Collagen Fibrils in the Human Cornea and Sclera,” Invest. Ophthalmol. Visual Sci., 32(8), pp. 2244–2258.
Pijanka, J. K., Coudrillier, B., Ziegler, K., Sorensen, T., Meek, K. M., Nguyen, T. D., Quigley, H. A., and Boote, C., 2012, “Quantitative Mapping of Collagen Fiber Orientation in Non-Glaucoma and Glaucoma Posterior Human Sclerae,” Invest. Ophthalmol. Visual Sci., 53(9), pp. 5258–5270. [CrossRef]
Coudrillier, B., Boote, C., Quigley, H. A., and Nguyen, T. D., 2012, “Scleral Anisotropy and Its Effects on the Mechanical Response of the Optic Nerve Head,” Biomech. Model. Mechanobiol., 12(5), pp. 941–963. [CrossRef] [PubMed]
Girard, M. J., Dahlmann-Noor, A., Rayapureddi, S., Bechara, J. A., Bertin, B. M., Jones, H., Albon, J., Khaw, P. T., and Ethier, C. R., 2011, “Quantitative Mapping of Scleral Fiber Orientation in Normal Rat Eyes,” Invest. Ophthalmol. Visual Sci., 52(13), pp. 9684–9693. [CrossRef]
Grytz, R., Meschke, G., and Jonas, J. B., 2011, “The Collagen Fibril Architecture in the Lamina Cribrosa and Peripapillary Sclera Predicted by a Computational Remodeling Approach,” Biomech. Model. Mechanobiol., 10(3), pp. 371–382. [CrossRef] [PubMed]
Fullwood, N. J., Hammiche, A., Pollock, H. M., Hourston, D. J., and Song, M., 1995, “Atomic Force Microscopy of the Cornea and Sclera,” Curr. Eye Res., 14(7), pp. 529–535. [CrossRef] [PubMed]
Schultz, D. S., Lotz, J. C., Lee, S. M., Trinidad, M. L., and Stewart, J. M., 2008, “Structural Factors That Mediate Scleral Stiffness,” Invest. Ophthalmol. Visual Sci., 49(10), pp. 4232–4236. [CrossRef]
Chen, K., Rowley, A. P., Weiland, J. D., and Humayun, M. S., 2013, “Elastic Properties of Human Posterior Eye,” J. Biomed. Mater. Res. Part A, (ePublished ahead of print). [CrossRef]
Holzapfel, G. A. and Ogden, R. W., 2004, Biomechanics of Soft Tissue in Cardiovascular Systems, Springer, New York.
Trier, K., Olsen, E. B., and Ammitzboll, T., 1990, “Regional Glycosaminoglycans Composition of the Human Sclera,” Acta Ophthalmol., 68(3), pp. 304–306. [CrossRef]
Quigley, E. N., Quigley, H. A., Pease, M. E., and Kerrigan, L. A., 1996, “Quantitative Studies of Elastin in the Optic Nerve Heads of Persons With Primary Open-Angle Glaucoma,” Ophthalmology, 103(10), pp. 1680–1685. [CrossRef] [PubMed]
Olsen, T. W., Aaberg, S. Y., Geroski, D. H., and Edelhauser, H. F., 1998, “Human Sclera: Thickness and Surface Area,” Am. J. Ophthalmol., 125(2), pp. 237–241. [CrossRef] [PubMed]
Yan, D., McPheeters, S., Johnson, G., Utzinger, U., and Vande Geest, J. P., 2011, “Microstructural Differences in the Human Posterior Sclera as a Function of Age and Race,” Invest. Ophthalmol. Visual Sci., 52(2), pp. 821–829. [CrossRef]
Danford, F. L., Yan, D., Cahir, T. M., Dreier, R. A., Girkin, C. A., and Vande Geest, J. P., 2013, “Differences in the Region and Depth-Dependent Microstructural Organization in Normal Versus Glaucomatous Human Posterior Sclerae,” Invest. Ophthalmol. Visual Sci., 54(13), pp. 7922–7932. [CrossRef]
Boote, C., Dennis, S., and Meek, K., 2004, “Spatial Mapping of Collagen Fibril Organisation in Primate Cornea—An X-Ray Diffraction Investigation,” J. Struct. Biol., 146(3), pp. 359–367. [CrossRef] [PubMed]
Gouget, C. L., Girard, M. J., and Ethier, C. R., 2012, “A Constrained von Mises Distribution to Describe Fiber Organization in Thin Soft Tissues,” Biomech. Model. Mechanobiol., 11(3–4), pp. 475–482. [CrossRef] [PubMed]
Pinsky, P. M., van der Heide, D., and Chernyak, D., 2005, “Computational Modeling of Mechanical Anisotropy in the Cornea and Sclera,” J. Cataract Refractive Surg., 31(1), pp. 136–145. [CrossRef]
Geraghty, B., Jones, S. W., Rama, P., Akhtar, R., and Elsheikh, A., 2012, “Age-Related Variations in the Biomechanical Properties of Human Sclera,” J. Mech. Behav. Biomed. Mater., 16, pp. 181–191. [CrossRef] [PubMed]
Schelske, R., 1864, “Ueber das Verhältniss des intraocularen Drucks und der Hornhautkrümmung des Auges,” Graefe's Arch. Ophthalmol., 10(2), pp. 1–46. [CrossRef]
Weber, A., 1877, “Die Ursache des Glaucoms,” Albrecht von Græfe's Arch. Ophthalmol., 23(1), pp. 1–91. [CrossRef]
Ischreyt, G., 1899, “Anatomische und physikalische Untersuchungen der Rindersklera,” Graefe's Arch. Ophthalmol., 48(2), pp. 384–419. [CrossRef]
Gloster, J., Perkins, E. S., and Pommier, M. L., 1957, “Extensibility of Strips of Sclera and Cornea,” Br. J. Ophthalmol., 41(2), pp. 103–110. [CrossRef] [PubMed]
Phillips, C. I. and Quick, M. C., 1960, “Impression Tonometry and the Effect of Eye Volume Variation,” Br. J. Ophthalmol., 44, pp. 149–163. [CrossRef] [PubMed]
Graebel, W. P. and van Alphen, G. W. H. M., 1977, “The Elasticity of Sclera and Choroid of the Human Eye, and Its Implications on Scleral Rigidity and Accommodation,” ASME J. Biomech. Eng., 99(4), pp. 203–208. [CrossRef]
Friberg, T. R. and Lace, J. W., 1988, “A Comparison of the Elastic Properties of Human Choroid and Sclera,” Exp. Eye Res., 47(3), pp. 429–436. [CrossRef] [PubMed]
Uchio, E., Ohno, S., Kudoh, J., Aoki, K., and Kisielewicz, L. T., 1999, “Simulation Model of an Eyeball Based on Finite Element Analysis on a Supercomputer,” Br. J. Ophthalmol., 83(10), pp. 1106–1111. [CrossRef] [PubMed]
Avetisov, E. S., Savitskaya, N. F., Vinetskaya, M. I., and Iomdina, E. N., 1983, “A Study of Biochemical and Biomechanical Qualities of Normal and Myopic Eye Sclera in Humans of Different Age Groups,” Metab., Pediatr. Syst. Ophthalmol., 7(4), pp. 183–188.
Curtin, B. J., 1969, “Physiopathologic Aspects of Scleral Stress-Strain,” Trans. Am. Ophthalmol. Soc., 67, pp. 417–461. [PubMed]
Downs, J. C., Suh, J. K., Thomas, K. A., Bellezza, A. J., Burgoyne, C. F., and Hart, R. T., 2003, “Viscoelastic Characterization of Peripapillary Sclera: Material Properties by Quadrant in Rabbit and Monkey Eyes,” ASME J. Biomech. Eng., 125(1), pp. 124–131. [CrossRef]
Downs, J. C., Suh, J. K., Thomas, K. A., Bellezza, A. J., Hart, R. T., and Burgoyne, C. F., 2005, “Viscoelastic Material Properties of the Peripapillary Sclera in Normal and Early-Glaucoma Monkey Eyes,” Invest. Ophthalmol. Visual Sci., 46(2), pp. 540–546. [CrossRef]
Lari, D. R., Schultz, D. S., Wang, A. S., Lee, O. T., and Stewart, J. M., 2012, “Scleral Mechanics: Comparing Whole Globe Inflation and Uniaxial Testing,” Exp. Eye Res., 94(1), pp. 128–135. [CrossRef] [PubMed]
Nagase, S., Yamanari, M., Tanaka, R., Yasui, T., Miura, M., Iwasaki, T., Goto, H., and Yasuno, Y., 2013, “Anisotropic Alteration of Scleral Birefringence to Uniaxial Mechanical Strain,” PLoS ONE, 8(3), p. e58716. [CrossRef] [PubMed]
Phillips, J. R., Khalaj, M., and McBrien, N. A., 2000, “Induced Myopia Associated With Increased Scleral Creep in Chick and Tree Shrew Eyes,” Invest. Ophthalmol. Visual Sci., 41(8), pp. 2028–2034.
Palko, J. R., Pan, X., and Liu, J., 2011, “Dynamic Testing of Regional Viscoelastic Behavior of Canine Sclera,” Exp. Eye Res., 93(6), pp. 825–832. [CrossRef] [PubMed]
Eilaghi, A., Flanagan, J. G., Tertinegg, I., Simmons, C. A., Brodland, G. W, and Ethier, C. R., 2010, “Biaxial Mechanical Testing of Human Sclera,” J. Biomech., 43(9), pp. 1696–1701. [CrossRef] [PubMed]
Myers, K. M., Coudrillier, B., Boyce, B. L., and Nguyen, T. D., 2010, “The Inflation Response of the Posterior Bovine Sclera,” Acta Biomater., 6(11), pp. 4327–4335. [CrossRef] [PubMed]
Elsheikh, A. and Anderson, K., 2005, “Comparative Study of Corneal Strip Extensometry and Inflation Tests,” J. R. Soc., Interface, 2(3), pp. 177–185. [CrossRef]
Boyce, B. L., Grazier, J. M., Jones, R. E., and Nguyen, T. D., 2008, “Full-Field Deformation of Bovine Cornea Under Constrained Inflation Conditions,” Biomaterials, 29(28), pp. 3896–3904. [CrossRef] [PubMed]
Battaglioli, J. L. and Kamm, R. D., 1984, “Measurements of the Compressive Properties of Scleral Tissue,” Invest. Ophthalmol. Visual Sci., 25(1), pp. 59–65.
Braunsmann, C., Hammer, C. M., Rheinlaender, J., Kruse, F. E., Schaffer, T. E., and Schlotzer-Schrehardt, U., 2012, “Evaluation of Lamina Cribrosa and Peripapillary Sclera Stiffness in Pseudoexfoliation and Normal Eyes by Atomic Force Microscopy,” Invest. Ophthalmol. Visual Sci., 53(6), pp. 2960–2967. [CrossRef]
Grytz, R., Fazio, M. A., Girard, M. J., Libertiaux, V., Bruno, L., Gardiner, S., Girkin, C. A., and Downs, J. C., 2013, “Material Properties of the Posterior Human Sclera,” J. Mech. Behav. Biomed. Mater., 29(1), pp. 602–617. [CrossRef] [PubMed]
Girard, M. J., Suh, J. K., Bottlang, M., Burgoyne, C. F., and Downs, J. C., 2011, “Biomechanical Changes in the Sclera of Monkey Eyes Exposed to Chronic IOP Elevations,” Invest. Ophthalmol. Visual Sci., 52(8), pp. 5656–5669. [CrossRef]
Coudrillier, B., Tian, J., Alexander, S.Myers, K. M.Quigley, H. A. and Nguyen, T. D., 2012, “Biomechanics of the Human Posterior Sclera: Age- and Glaucoma-Related Changes Measured Using Inflation Testing,” Invest. Ophthalmol. Visual Sci., 53(4), pp. 1714–1728. [CrossRef]
Woo, S. L., Kobayashi, A. S., Schlegel, W. A., and Lawrence, C., 1972, “Nonlinear Material Properties of Intact Cornea and Sclera,” Exp. Eye Res., 14(1), pp. 29–39. [CrossRef] [PubMed]
Greene, P. R. and McMahon, T. A., 1979, “Scleral Creep vs. Temperature and Pressure In Vitro,” Exp. Eye Res., 29(5), pp. 527–537. [CrossRef] [PubMed]
Fazio, M. A., Grytz, R., Bruno, L., Girard, M. J., Gardiner, S., Girkin, C. A., and Downs, J. C., 2012, “Regional Variations in Mechanical Strain in the Posterior Human Sclera,” Invest. Ophthalmol. Visual Sci., 53(9), pp. 5326–5333. [CrossRef]
Fazio, M. A., Grytz, R., Morris, J. S., Bruno, L., Gardiner, S. K., Girkin, C. A., and Downs, J. C., 2013, “Age-Related Changes in Human Peripapillary Scleral Strain,” Biomech. Model. Mechanobiol., July 2013 (online only). [CrossRef]
Girard, M. J., Suh, J. K., Bottlang, M., Burgoyne, C. F., and Downs, J. C., 2009, “Scleral Biomechanics in the Aging Monkey Eye,” Invest. Ophthalmol. Visual Sci., 50(11), pp. 5226–5237. [CrossRef]
Myers, K. M., Cone, F. E., Quigley, H. A., Gelman, S., Pease, M. E., and Nguyen, T. D., 2010, “The In Vitro Inflation Response of Mouse Sclera,” Exp. Eye Res., 91(6), pp. 866–875. [CrossRef] [PubMed]
Nguyen, C., Cone, F. E., Nguyen, T. D., Coudrillier, B., Pease, M. E., Steinhart, M. R., Oglesby, E. N., Jefferys, J. L., and Quigley, H. A., 2013, “Studies of Scleral Biomechanical Behavior Related to Susceptibility for Retinal Ganglion Cell Loss in Experimental Mouse Glaucoma,” Invest. Ophthalmol. Visual Sci., 54(3), pp. 1767–1780. [CrossRef]
Girard, M. J., Downs, J. C., Burgoyne, C. F., and Suh, J. K., 2008, “Experimental Surface Strain Mapping of Porcine Peripapillary Sclera Due to Elevations of Intraocular Pressure,” ASME J. Biomech. Eng., 130(4), p. 041017. [CrossRef]
Tang, J. and Liu, J., 2012, “Ultrasonic Measurement of Scleral Cross-Sectional Strains During Elevations of Intraocular Pressure: Method Validation and Initial Results in Posterior Porcine Sclera,” ASME J. Biomech. Eng., 134(9), p. 091007. [CrossRef]
Morris, H. J., Tang, J., Cruz Perez, B., Pan, X., Hart, R. T., Weber, P. A., and Liu, J., 2013, “Correlation Between Biomechanical Responses of Posterior Sclera and IOP Elevations During Micro Intraocular Volume Change,” Invest. Ophthalmol. Visual Sci., 54(12), pp. 7215–7222. [CrossRef]
Keyes, J. T., Yan, D., Rader, J. H., Utzinger, U., and Vande Geest, J. P., 2011, “A Gimbal-Mounted Pressurization Chamber for Macroscopic and Microscopic Assessment of Ocular Tissues,” ASME J. Biomech. Eng., 133(9), p. 095001. [CrossRef]
Tonge, T. K., Murienne, B. J., Coudrillier, B., Alexander, S., Rothkopf, W., and Nguyen, D. T., 2013, “Minimal Preconditioning Effects Observed for Inflation Tests of Planar Tissues,” ASME J. Biomech. Eng., 135(11), p. 114502. [CrossRef]
Gray, W., Sponsel, W. E., Scribbick, F. W., Stern, A. R., Weiss, C. E., Groth, S. L., and Walker, J. D., 2011, “Numerical Modeling of Paintball Impact Ocular Trauma: Identification of Progressive Injury Mechanisms,” Invest. Ophthalmol. Visual Sci., 52(10), pp. 7506–7513. [CrossRef]
Friedenwald, J. S., 1937, “Contribution to the Theory and Practice of Tonometry,” Am. J. Ophthalmol., 20, pp. 985–1024.
Hommer, A., Fuchsjager-Mayrl, G., Resch, H., Vass, C., Garhofer, G., and Schmetterer, L., 2008, “Estimation of Ocular Rigidity Based on Measurement of Pulse Amplitude Using Pneumotonometry and Fundus Pulse Using Laser Interferometry in Glaucoma,” Invest. Ophthalmol. Visual Sci., 49(9), pp. 4046–4050. [CrossRef]
Wang, J., Freeman, E. E., Descovich, D., Harasymowycz, P. J., Kamdeu Fansi, A., Li, G., and Lesk, M. R., 2013, “Estimation of Ocular Rigidity in Glaucoma Using Ocular Pulse Amplitude and Pulsatile Choroidal Blood Flow,” Invest. Ophthalmol. Visual Sci., 54(3), pp. 1706–1711. [CrossRef]
Pallikaris, I. G., Kymionis, G. D., Ginis, H. S., Kounis, G. A., and Tsilimbaris, M. K., 2005, “Ocular Rigidity in Living Human Eyes,” Invest. Ophthalmol. Visual Sci., 46(2), pp. 409–414. [CrossRef]
Norman, R. E., Flanagan, J. G., Rausch, S. M., Sigal, I. A., Tertinegg, I., Eilaghi, A., Portnoy, S., Sled, J. G., and Ethier, C. R., 2010, “Dimensions of the Human Sclera: Thickness Measurement and Regional Changes With Axial Length,” Exp. Eye Res., 90(2), pp. 277–284. [CrossRef] [PubMed]
Lam, A., Sambursky, R. P., and Maguire, J. I., 2005, “Measurement of Scleral Thickness in Uveal Effusion Syndrome,” Am. J. Ophthalmol., 140(2), pp. 329–331. [CrossRef] [PubMed]
Oliveira, C., Tello, C., Liebmann, J., and Ritch, R., 2006, “Central Corneal Thickness is not Related to Anterior Scleral Thickness or Axial Length,” J. Glaucoma, 15(3), pp. 190–194. [CrossRef] [PubMed]
Sigal, I. A., Flanagan, J. G., Tertinegg, I., and Ethier, C. R., 2009, “Modeling Individual-Specific Human Optic Nerve Head Biomechanics. Part II: Influence of Material Properties,” Biomech. Model. Mechanobiol., 8(2), pp. 99–109. [CrossRef] [PubMed]
Eilaghi, A., Flanagan, J. G., Simmons, C. A., and Ethier, C. R., 2010, “Effects of Scleral Stiffness Properties on Optic Nerve Head Biomechanics,” Ann. Biomed. Eng., 38(4), pp. 1586–1592. [CrossRef] [PubMed]
Girard, M. J., Downs, J. C., Burgoyne, C. F., and Suh, J. K., 2009, “Peripapillary and Posterior Scleral Mechanics—Part I: Development of an Anisotropic Hyperelastic Constitutive Model,” ASME J. Biomech. Eng., 131(5), p. 051011. [CrossRef]
Sigal, I. A., 2009, “Interactions Between Geometry and Mechanical Properties on the Optic Nerve Head,” Invest. Ophthalmol. Visual Sci., 50(6), pp. 2785–2795. [CrossRef]
Vurgese, S., Panda-Jonas, S., and Jonas, J. B., 2012, “Scleral Thickness in Human Eyes,” PloS ONE, 7, p. e29692. [CrossRef] [PubMed]
Downs, J. C., Blidner, R. A., Bellezza, A. J., Thompson, H. W., Hart, R. T., and Burgoyne, C. F., 2002, “Peripapillary Scleral Thickness in Perfusion-Fixed Normal Monkey Eyes,” Invest. Ophthalmol. Visual Sci., 43(7), pp. 2229–2235.
McBrien, N. A., Cornell, L. M., and Gentle, A., 2001, “Structural and Ultrastructural Changes to the Sclera in a Mammalian Model of High Myopia,” Invest. Ophthalmol. Visual Sci., 42(10), pp. 2179–2187.
Rada, J. A., Nickla, D. L., and Troilo, D., 2000, “Decreased Proteoglycan Synthesis Associated With Form Deprivation Myopia in Mature Primate Eyes,” Invest. Ophthalmol. Visual Sci., 41(8), pp. 2050–2058.
Backhouse, S. and Phillips, J. R., 2010, “Effect of Induced Myopia on Scleral Myofibroblasts and In Vivo Ocular Biomechanical Compliance in the Guinea Pig,” Invest. Ophthalmol. Visual Sci., 51(12), pp. 6162–6171. [CrossRef]
Chen, B. Y., Ma, J. X., Wang, C. Y., and Chen, W. Y., 2012, “Mechanical Behavior of Scleral Fibroblasts in Experimental Myopia,” Graefe's Arch. Clin. Exp. Ophthalmol.,250(3), pp. 341–348. [CrossRef]
Booij, J. C., Baas, D. C., Beisekeeva, J., Gorgels, T. G., and Bergen, A. A., 2010, “The Dynamic Nature of Bruch's Membrane,” Prog. Retin. Eye Res., 29(1), pp. 1–18. [CrossRef] [PubMed]
Korte, G. E. and D'Aversa, G., 1989, “The Elastic Tissue of Bruch's Membrane. Connections to Choroidal Elastic Tissue and the Ciliary Epithelium of the Rabbit and Human Eyes,” Arch. Ophthalmol. (Chicago), 107(11), pp. 1654–1658. [CrossRef]
Croft, M. A., Nork, T. M., McDonald, J. P., Katz, A., Lutjen-Drecoll, E., and Kaufman, P. L., 2013, “Accommodative Movements of the Vitreous Membrane, Choroid, and Sclera in Young and Presbyopic Human and Nonhuman Primate Eyes,” Invest. Ophthalmol. Visual Sci., 54(7), pp. 5049–5058. [CrossRef]
Ugarte, M., Hussain, A. A., and Marshall, J., 2006, “An Experimental Study of the Elastic Properties of the Human Bruch's Membrane-Choroid Complex: Relevance to Ageing,” Br. J. Ophthalmol., 90(5), pp. 621–626. [CrossRef] [PubMed]
Wu, W., Peters, W. H.III, and Hammer, M. E., 1987, “Basic Mechanical Properties of Retina in Simple Elongation,” ASME J. Biomech. Eng., 109(1), pp. 65–67. [CrossRef]
Jones, I. L., Warner, M., and Stevens, J. D., 1992, “Mathematical Modelling of the Elastic Properties of Retina: A Determination of Young's Modulus,” Eye, 6(6), p. 556. [CrossRef] [PubMed]
Wollensak, G. and Spoerl, E., 2004, “Biomechanical Characteristics of Retina,” Retina, 24(6), pp. 967–970. [CrossRef] [PubMed]
Panozzo, G. and Mercanti, A., 2004, “Optical Coherence Tomography Findings in Myopic Traction Maculopathy,” Arch. Ophthalmol. (Chicago), 122(10), pp. 1455–1460. [CrossRef]
Park, S. and Lee, Y. J., 2013, “Nano-Mechanical Compliance of Muller Cells Investigated by Atomic Force Microscopy,” Int. J. Biol. Sci., 9(7), pp. 702–706. [CrossRef] [PubMed]
Shelton, L. and Rada, J. S., 2007, “Effects of Cyclic Mechanical Stretch on Extracellular Matrix Synthesis by Human Scleral Fibroblasts,” Exp. Eye Res., 84(2), pp. 314–322. [CrossRef] [PubMed]
Sigal, I. A., Flanagan, J. G., Tertinegg, I., and Ethier, C. R., 2007, “Predicted Extension, Compression and Shearing of Optic Nerve Head Tissues,” Exp. Eye Res., 85(3), pp. 312–322. [CrossRef] [PubMed]
Johnson, E. C., Morrison, J. C., Farrell, S., Deppmeier, L., Moore, C. G., and McGinty, M. R., 1996, “The Effect of Chronically Elevated Intraocular Pressure on the Rat Optic Nerve Head Extracellular Matrix,” Exp. Eye Res., 62(6), pp. 663–674. [CrossRef] [PubMed]
Johnson, E. C., Jia, L., Cepurna, W. O., Doser, T. A., and Morrison, J. C., 2007, “Global Changes in Optic Nerve Head Gene Expression After Exposure to Elevated Intraocular Pressure in a rat Glaucoma Model,” Invest. Ophthalmol. Visual Sci., 48(7), pp. 3161–3177. [CrossRef]
Goldich, Y., Marcovich, A. L., Barkana, Y., Mandel, Y., Hirsh, A., Morad, Y., Avni, I., and Zadok, D., 2012, “Clinical and Corneal Biomechanical Changes After Collagen Cross-Linking With Riboflavin and UV Irradiation in Patients With Progressive Keratoconus: Results After 2 Years of Follow-Up,” Cornea, 31(6), pp. 609–614. [CrossRef] [PubMed]
Sigal, I. A., Flanagan, J. G., Lathrop, K. L., Tertinegg, I., and Bilonick, R., 2012, “Human Lamina Cribrosa Insertion and Age,” Invest. Ophthalmol. Visual Sci., 53(11), pp. 6870–6879. [CrossRef]
Sigal, I. A. and Ethier, C. R., 2009, “Biomechanics of the Optic Nerve Head,” Exp. Eye Res., 88(4), pp. 799–807. [CrossRef] [PubMed]
Sigal, I. A., Flanagan, J. G., Tertinegg, I., and Ethier, C. R., 2010, “3D Morphometry of the Human Optic Nerve Head,” Exp. Eye Res., 90(1), pp. 70–80. [CrossRef] [PubMed]
Young, R. D., 1985, “The Ultrastructural Organization of Proteoglycans and Collagen in Human and Rabbit Scleral Matrix,” J. Cell Sci., 74, pp. 95–104. [PubMed]
Wolff, E., 1997, Wolff's Anatomy of the Eye and Orbit, Chapman and Hall Medical, London.
Phillips, J. R. and McBrien, N. A., 1995, “Form Deprivation Myopia: Elastic Properties of Sclera,” Ophthalmic Physiol. Opt., 15(5), pp. 357–362. [CrossRef] [PubMed]
Wollensak, G. and Spoerl, E., 2004, “Collagen Crosslinking of Human and Porcine Sclera,” J. Cataract Refractive Surg., 30(3), pp. 689–695. [CrossRef]
Spoerl, E., Boehm, A. G., and Pillunat, L. E., 2005, “The Influence of Various Substances on the Biomechanical Behavior of Lamina Cribrosa and Peripapillary Sclera,” Invest. Ophthalmol. Visual Sci., 46(4), pp. 1286–1290. [CrossRef]
Mortazavi, A. M., Simon, B. R., Stamer, W. D., and Vande Geest, J. P., 2009, “Drained Secant Modulus for Human and Porcine Peripapillary Sclera Using Unconfined Compression Testing,” Exp. Eye Res., 89(6), pp. 892–897. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 1

Overview of the eye, including some tissues important in glaucomatous optic neuropathy. (a) Micro-MRI image of the human eye. The typical radius of the eye is 12.5 mm. The lens is the biconvex structure in the anterior portion of the eye (left side of the panel) and is covered by the cornea on the exterior of the eye. The sclera, which appears black in this imaging modality, can be clearly distinguished from the other tissues. The contour of the retina is also visible, in light gray, attached to the innermost layer of the sclera. Some details of the optic nerve can be detected, such as the pia matter, a sheath of connective tissue enclosing the optic nerve posterior to the sclera (right side of the panel). The optic nerve exits the eye posteriorly via the scleral canal, carrying visual signals to the brain. The boxed region is the optic nerve head (ONH). (Image courtesy of Mr. Richard Norman.) (b) Histologic cross-section of the ONH showing the retina (dark gray at left), the peripapillary sclera (bright tissue at top and bottom), the lamina cribrosa (boxed in red, which spans the scleral canal like a hammock), and the columns of axon bundles in the posterior laminar region en route to the brain (middle right). (Reproduced with permission from Sigal et al. [205]. Image: ARVO.) (c) En face scanning electron micrograph of the human lamina cribrosa, showing connective tissue elements only. Axon bundles, which normally pass through the pores, have been digested away. Individual beams and pores are visible, and the typical “hourglass” organization of the pores is highlighted (dashed red line). The average LC radius is 0.85 mm. (Reproduced with permission from Quigley et al. [59]. Image: Elsevier.)

Grahic Jump Location
Fig. 2

Intraocular pressure (IOP) is dynamic, fluctuating in response to external forces on the globe. Actions such as blinking, squeezing, rubbing, and moving the eye all acutely alter the IOP by significant amounts. Additionally, pulsation of systemic blood pressure results in a periodic change in the IOP, which is termed the ocular pulse. This ocular pulse magnitude is approximately 20% of the mean IOP. Based upon data from Ref. [20].

Grahic Jump Location
Fig. 3

Histologic section through the ONH, showing the retina (R), the choroid (C), the peripapillary sclera (ppS), the lamina cribrosa (LC) (outlined in black), the post-laminar tissue of the optic nerve (pLC), and the vitreous chamber inside of the eye (VH) for (a) a normal ONH, and (b) a glaucomatous ONH. Note that the retina has artifactually separated from the choroid in some regions of the image in (a). Glaucoma is clinically characterized by the cupping of the ONH, which results from the loss of RGC axons and from thinning and the permanent posterior bowing of the LC. Scale bar: about 0.75 mm. (Reproduced with permission from Ref. [64]. Images: ARVO.)

Grahic Jump Location
Fig. 4

Histologic sections of a normal ONH fixed at (a) 5 mm Hg, and (b) 50 mm Hg (original magnification 35×). The LC significantly bows backward at 50 mm Hg, yet its thickness is not noticeably different between the two pressures. (c) Interpretation of the deformation mechanisms of the LC. The similar deformed thickness and significant bowing together suggest that shear deformation dominates in the peripheral LC, while tensile deformation dominates in the central LC. (Reproduced with permission from Yan et al. [85]. Image: BMJ Publishing Group.)

Grahic Jump Location
Fig. 5

(a) Enhanced depth imaging SD-OCT image showing a cross-section through a normal monkey ONH (top). The bottom panel shows the same image with delineations: (green) anterior surface of the retina, (blue) posterior surface of the retinal nerve fiber layer (RGC axons), (orange) posterior layer of retina/Bruch's membrane complex, (yellow) posterior layer of the sclera, (red) neural canal (also called the scleral canal) opening, (purple dots) anterior limit of the LC, and (yellow dots) posterior limit of the LC. (Reproduced with permission from Yang et al. [94].) (b) Adaptive optics scanning laser ophthalmoscope image of the primate ONH, as viewed en face. Individual LC pores and beams are visible. Scale bar = 0.2 mm. (Reproduced with permission from Ivers et al. [95]. Images: ARVO.)

Grahic Jump Location
Fig. 6

(a) (top left) Cross-section of a specimen-specific finite element model of the ONH region, constructed from serial histology images (superimposed), (top right) 3-dimensional finite element model, (bottom) cross-sections of the finite element model at low IOP (5 mm Hg) compared to the cross-section of the model at elevated IOP (50 mm Hg). This model demonstrated a rotation of the sclera, elongation and thinning of the LC and neural tissue, and a posterior bowing of the LC. (Reproduced with permission from Sigal et al. [206,207]. Images: Elsevier.) (b) Multiscale model of the LC microarchitecture. Micro-scale modeling of the LC beam deformations was informed from the results obtained from the macro-scale. This method predicted that the stresses and strains in the beams were considerably larger than those obtained by modeling the LC as a homogeneous tissue. (Reproduced with permission from Downs et al. [109]. Image: IEEE.)

Grahic Jump Location
Fig. 7

Imaging of the sclera microstructure at multiple length-scales. (a) Transmission electron micrograph of two rabbit scleral collagen fibrils. The characteristic D-period of the collagen fibril is clearly visible. The black filaments bridging between two adjacent fibrils are proteoglycans. (Adapted with permission from Young et al. [208]. Image: Company of Biologists.) (b) Transmission electron micrograph showing a transverse section of collagen lamellae in the outer, mid, and inner sclera of the normal tree shrew. Note the large variations in collagen diameters and spacing within and between each region. (Reproduced with permission from McBrien et al. [187]. Image: ARVO.) (c) Electron micrograph image of the human sclera showing six superimposed lamellae. Within each lamella, collagen fibrils run in the same direction. Large angle variations are observed between adjacent lamellae, and fibroblasts occupy the interlamellar space. (Reproduced with permission from Fig. 7.55 in Wolff [209]. Image: Chapman & Hall Medical.) (d) Scanning electron micrograph of the collagen bundles in the outer sclera of the human eye. (Reproduced with permission from Komai et al. [118]. Image: ARVO.) (e) Montage of 15 × 15 second harmonic generation multiphoton images of the human peripapillary sclera showing that in this region, collagen lamellae are preferentially oriented in the circumferential direction. (f) A composite polar plot showing the preferred orientations of aligned collagen fibers for a human sclera. The color scale conveys the degree of fiber alignment. (Figures 4(e) and 4(f) are reproduced with permission from Pijanka et al. [119]. Images: ARVO.)

Grahic Jump Location
Fig. 8

Fibroblasts are abundant in rat scleral tissue. In this maximum intensity projection (140 slices stacked, each 1 μm thick) of rat sclera stained with the dye Draq5, red dots represent individual nuclei in the sclera. Here, the posterior sclera of an enucleated rat eye was mounted flat on a glass slide, and cellular layers of the inner eye such as the choroid and retina were removed by scrubbing with a cotton swab. Remaining nuclei are attributed to scleral fibroblasts.

Grahic Jump Location
Fig. 9

Multiple mechanical interrogation modalities have been employed to derive the material properties of scleral tissue. (a) Uniaxial tensile testing of scleral strips immersed in a tissue bath yields estimates of the scleral modulus, although sample preparation may alter the collagen structure, and the imposed load may not be physiological. (Image used with permission from Geraghty et al. [135]. Image: Elsevier.) (b) Biaxial testing of samples requires a more complex testing setup but is more likely to reproduce physiological loading conditions. Here, BioRakes (tungsten wires) are used to anchor the specimen for simultaneous loading in two directions, and optical tracking of black dots on the surface is used to spatially resolve strain. (Image courtesy of Dr. Armin Eilaghi [152].) (c) Inflation testing was developed to reduce tissue preparation and impose physiological loading conditions. At left, schematic of the inflation protocol from Ref. [160]; the posterior scleral shell is glued into a plastic holder and anchored in a chamber capable of controlling both humidity and pressure. At right, a photo of a transilluminated human sclera mounted in the chamber and speckled with graphite powder for optical tracking by CCD cameras during DIC (see Ref. [160]; image: ARVO, used with permission). Other inflation protocols use similar setups with notable differences in the image acquisition technique, such as a laser for ESPI [163] or an ultrasound probe [169,170].

Grahic Jump Location
Fig. 10

Micro-magnetic resonance imaging (MRI) images of the human eye segmented to produce a 3D rendering of the globe annotated with wall thickness. Here, letters denote the orientation of the eye: S, superior; I, inferior; N, nasal; T, temporal; P, posterior; and A, anterior. Thickness varies regionally, with the temporal quadrant of the posterior sclera being significantly thicker than that in the nasal quadrant. The sclera is thinnest around the equator, becomes thicker posteriorly, and then becomes thin again in the peripapillary region immediately adjacent to the optic nerve head. (Adapted with permission from Norman et al. [178]. Image: Elsevier.)



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In