Research Papers

Review: The Role of Biomechanical Modeling in the Rupture Risk Assessment for Abdominal Aortic Aneurysms

[+] Author and Article Information
Giampaolo Martufi

e-mail: martufi@kth.se

T. Christian Gasser

e-mail: tg@hallf.kth.se
Department of Solid Mechanics,
School of Engineering Sciences,
Royal Institute of Technology (KTH),
Osquars Backe 1,
SE-100 44 Stockholm, Sweden

Contributed by the Bioengineering Division of ASME for publication in the JOURNAL OF BIOMECHANICAL ENGINEERING. Manuscript received October 17, 2012; final manuscript received December 21, 2012; accepted manuscript posted December 26, 2012; published online February 7, 2013. Editor: Victor H. Barocas.

J Biomech Eng 135(2), 021010 (Feb 07, 2013) (10 pages) Paper No: BIO-12-1491; doi: 10.1115/1.4023254 History: Received October 17, 2012; Revised December 21, 2012; Accepted December 26, 2012

AAA disease is a serious condition and a multidisciplinary approach including biomechanics is needed to better understand and more effectively treat this disease. A rupture risk assessment is central to the management of AAA patients, and biomechanical simulation is a powerful tool to assist clinical decisions. Central to such a simulation approach is a need for robust and physiologically relevant models. Vascular tissue senses and responds actively to changes in its mechanical environment, a crucial tissue property that might also improve the biomechanical AAA rupture risk assessment. Specifically, constitutive modeling should not only focus on the (passive) interaction of structural components within the vascular wall, but also how cells dynamically maintain such a structure. In this article, after specifying the objectives of an AAA rupture risk assessment, the histology and mechanical properties of AAA tissue, with emphasis on the wall, are reviewed. Then a histomechanical constitutive description of the AAA wall is introduced that specifically accounts for collagen turnover. A test case simulation clearly emphasizes the need for constitutive descriptions that remodels with respect to the mechanical loading state. Finally, remarks regarding modeling of realistic clinical problems and possible future trends conclude the article.

Copyright © 2013 by ASME
Your Session has timed out. Please sign back in to continue.


Vorp, D. A., Raghavan, M. L., and Webster., M., 1998, “Mechanical Wall Stress in Abdominal Aortic Aneurysm: Influence of Diameter and Asymmetry,” J. Vasc. Surg., 27, pp. 632–639. [CrossRef] [PubMed]
Upchurch, Jr., G. R., and Schaub, T. A., 2006, “Abdominal Aortic Aneurysm,” Am. Fam. Physician, 73, pp. 1198–1204. [PubMed]
Patel, M. I., Hardman, D. T. A., Fisher, C. M., and Appleberg, M., 1995, “Current Views on the Pathogenesis of Abdominal Aortic Aneurysms,” J. Am. Col. Surg., 181, pp. 371–382.
Søgaard, R., Laustsen, J., and Lindholt, J., 2012, “Cost Effectiveness of Abdominal Aortic Aneurysm Screening and Rescreening in Men in a Modern Context: Evaluation of a Hypothetical Cohort Using a Decision Analytical Model.,” Br. Med. J., 345, p. e4276. [CrossRef]
The United Kingdom EVAR Trial Investigators, 2010, “Endovascular versus Open Repair of Abdominal Aortic Aneurysm,” N. Engl. J. Med., 362, pp. 1863–1871. [CrossRef] [PubMed]
Davies, M. J., 1998, “Aortic Aneurysm Formation: Lessons From Human Studies and Experimental Models,” Circulation, 98, pp. 193–195. [CrossRef] [PubMed]
Kazi, M., Thyberg, J., Religa, P., Roy, J., Eriksson, P., Hedin, U., and Swedenborg, J., 2003, “Influence of Intraluminal Thrombus on Structural and Cellular Composition of Abdominal Aortic Aneurysm Wall,” J. Vasc. Surg., 38, pp. 1283–1292. [CrossRef] [PubMed]
Hans, S. S., Jareunpoon, O., Balasubramaniam, M., and Zelenock, G. B., 2005, “Size and Location of Thrombus in Intact and Ruptured Abdominal Aortic Aneurysms,” J. Vasc. Surg., 41(4), pp. 584–588. [CrossRef] [PubMed]
Choke, E., Cockerill, G., Wilson, W. R., Sayed, S., Dawson, J., Loftus, I., and Thompson., M. M., 2005, “A Review of Biological Factors Implicated in Abdominal Aortic Aneurysm Rupture,” Eur. J. Vasc. Endovasc. Surg., 30, pp. 227–244. [CrossRef] [PubMed]
Folkesson, M., Silveira, A., Eriksson, P., and Swedenborg, J., 2011, “Protease Activity in the Multi-Layered Intra-Luminal Thrombus of Abdominal Aortic Aneurysms,” Atherosclerosis, 218(2), pp. 294–299. [CrossRef] [PubMed]
Kazi, M., Zhu, C., Roy, J., Paulsson-Berne, G., Hamsten, A., Swedenborg, J., Hedin, U., and Eriksson, P., 2005, “Difference in Matrix-Degrading Protease Expression and Activity Between Thrombus-Free and Thrombus-Covered Wall of Abdominal Aortic Aneurysm,” Arterioscler. Thromb. Vasc. Biol., 25, pp. 1341–1346. [CrossRef] [PubMed]
Vorp, D. A., Lee, P. C., Wang, D. H., Makaroun, M. S., Nemoto, E. M., Ogawa, S., and Webster, M. W., 2001, “Association of Intraluminal Thrombus in Abdominal Aortic Aneurysm With Local Hypoxia and Wall Weakening,” J. Vasc. Surg., 34, pp. 291–299. [CrossRef] [PubMed]
Li, Z. Y., U-King-Im, J., Tang, T. Y., Soh, E., See, T. C., and Gillard, J. H., 2008, “Impact of Calcification and Intraluminal Thrombus on the Computed Wall Stresses of Abdominal Aortic Aneurysm,” J. Vasc. Surg., 47(5), pp. 928–935. [CrossRef] [PubMed]
Vorp, D. A., and Vande Geest, J. P., 2005, “Biomechanical Determinants of Abdominal Aortic Aneurysm Rupture,” Arterioscler. Thromb. Vasc. Biol., 25, pp. 1558–1566. [CrossRef] [PubMed]
Vorp, D. A., Mandarino, W. A., Webster, M. W., and Gorcsan 3rd., J., 1996a, “Potential Influence of Intraluminal Thrombus on Abdominal Aortic Aneurysm as Assessed by a New Non-Invasive Method,” Cardiovasc. Surg., 4, pp. 732–739. [CrossRef]
Wang, D. H. J., Makaroun, M. S., Webster, M. W., and Vorp, D. A., 2002, “Effect of Intraluminal Thrombus on Wall Stress in Patient-Specific Models of Abdominal Aortic Aneurysm,” J. Vasc. Surg., 36, pp. 598–604. [CrossRef] [PubMed]
Mower, W. R., Quinones, W. J., and Gambhir, S. S., 1997, “Effect of Intraluminal Thrombus on Abdominal Aortic Aneurysm Wall Stress,” J. Vasc. Surg., 26(4), pp. 602–608. [CrossRef] [PubMed]
Thubrikar, M. J., 2003, “Effect of Thrombus on Abdominal Aortic Aneurysm Wall Dilatation and Stress,” J. Cardiovasc. Surg., 44, pp. 67–77.
Polzer, S., Gasser, T. C., Markert, B., Bursa, J., and Skacel, P., 2012, “Impact of Poroelasticity of Intraluminal Thrombus on Wall Stress of Abdominal Aortic Aneurysms,” BioMedical Eng., online 11:62 doi: [CrossRef]10.1186/1475-925X-11-62.
Schurink, G. W., van Baalen, J. M., Visser, M. J., and van Bockel, J. H., 2000, “Thrombus Within an Aortic Aneurysm Does Not Reduce Pressure on the Aneurysmal Wall,” J. Vasc. Surg.31, pp. 501–506. [CrossRef] [PubMed]
Hinnen, J. W., Koning, O. H., Visser, M. J., and Van Bockel, H. J., 2005, “Effect of Intraluminal Thrombus on Pressure Transmission in the Abdominal Aortic Aneurysm,” J. Vasc. Surg.42, pp. 1176–1182. [CrossRef] [PubMed]
Darling, R. C., Messina, C. R., Brewster, D. C., and Ottinger, L. W., 1977, “Autopsy Study of Unoperated Abdominal Aortic Aneurysms. The Case for Early Resection,” Circulation, 56(3), pp. II161–II164. [PubMed]
Hall, A. J., Busse, E. F. G., McCarville, D. J., and Burgess, J. J., 2000, “Aortic Wall Tension as a Predictive Factor for Abdominal Aortic Aneurysm Rupture: Improving the Selection of Patients for Abdominal Aortic Aneurysm Repair,” Ann. Vasc. Surg., 14, pp. 152–157. [CrossRef] [PubMed]
The UK Small Aneurysm Trial Participants, 1998, “Mortality Results for Randomised Controlled Trial of Early Elective Surgery or Ultrasonographic Surveillance for Small Abdominal Aortic Aneurysms,” Lancet, 352, pp. 1649–1655. [CrossRef] [PubMed]
Heikkinen, M., Salenius, J-P., and Auvinen, O., 2002, “Ruptured Abdominal Aortic Aneurysm in a Well-Defined Geographical Area,” J. Vasc. Surg., 36, pp. 291–296. [CrossRef] [PubMed]
Choksy, S. A., Wilmink, A. B., and Quick, C. R., 1999, “Ruptured Abdominal Aortic Aneurysm in the Huntingdon District: a 10-Year Experience,” Ann. R. College of Surgeons of England, 81, pp. 27–31.
Galland, R. B., Whiteley, M. S., and Magee, T. R., 1998, “The Fate of Patients Undergoing Surveillance of Small Abdominal Aortic Aneurysms,” Eur. J. Vasc. Endovasc, 16, pp. 104–109. [CrossRef]
Brewster, D. C., Cronenwett, J. L., Hallett, J. W., Johnston, K. W., Krupski, W. C., and Matsumura, J. S., 2003, “Guidelines for the Treatment of Abdominal Aortic Aneurysms. Report of a Subcommittee of the Joint Council of the American Association for Vascular Surgery and Society for Vascular Surgery,” J. Vasc. Surg., 37, pp. 1106–1117. [CrossRef] [PubMed]
Limet, R., Sakalihasan, N., and Albert, A., 1991, “Determination of the Expansion Rate and the Incidence of Rupture of Abdominal Aortic Aneurysms,” J. Vasc. Surg., 14, pp. 540–548. [CrossRef] [PubMed]
Lederle, F. A., Johnson, G. R., Wilson, S. E., Ballard, D. J., Jordan, Jr., W. D., Blebea, J., Littooy, F. N., Freischlag, J. A., Bandyk, D., Rapp, J. H., and Salam, A. A., 2002, “Rupture Rate of Large Abdominal Aortic Aneurysms in Patients Refusing or Unfit for Elective Repair,” J. Am. Med. Assoc., 287(22), pp. 2968–2972. [CrossRef]
Brown, P. M., Zelt, D. T., and Sobolev, B., 2003, “The Risk of Rupture in Untreated Aneurysms: The Impact of Size, Gender, and Expansion Rate,” J. Vasc. Surg., 37(2), pp. 280–284. [CrossRef] [PubMed]
Martufi, G., Auer, M., Roy, J., Swedenborg, J., Sakalihasan, N., Panuccio, G., and Gasser, T. C., 2012, “Growth of Small Abdominal Aortic Aneurysms: A Multidimensional Analysis,” J. Vasc. Surg., [CrossRef] (in press).
Brown, L. C., and Powell, J. T., 1999, “Risk Factors For Aneurysm Rupture in Patients Kept Under Ultrasound Surveillance. UK Small Aneurysm Trial Participants,” Ann. Surg., 230(3), pp. 289–296. [CrossRef] [PubMed]
Cronenwett, J. L., 1996, “Variables That Affect the Expansion Rate and Rupture of Abdominal Aortic Aneurysms,” Ann N.Y. Acad. Sci., 800, pp. 56–67. [CrossRef] [PubMed]
Cronenwett, J. L., Murphy, T. F., Zelenock, G. B., Whitehouse, Jr., W. M., Lindenauer, S. M., Graham, L. M., Quint, L. E., Silver, T. M., and Stanley, J. C., 1985, “Actuarial Analysis of Variables Associated With Rupture of Small Abdominal Aortic Aneurysms,” Surgery, 98, pp. 472–483. [PubMed]
Foster, J. H., Bolasny, B. L., Gobbel, Jr., W. G., and Scott, Jr., H. W., 1969, “Comparative Study of Elective Resection and Expectant Treatment of Abdominal Aortic Aneurysm,” Surg. Gynecol. Obstet., 129(1), pp. 1–9. [PubMed]
Sterpetti, A. V., Cavallaro, A., Cavallari, N., Allegrucci, P., Tamburelli, A., Agosta, F., and Bartoli, S., 1991, “Factors Influencing the Rupture of Abdominal Aortic Aneurysms,” Surg. Gynecol. Obstet., 173(3), pp. 175–178. [PubMed]
Szilagyi, D. E., Elliott, J. P., and Smith, R. F., 1972, “Clinical Fate of the Patient With Asymptomatic Abdominal Aortic Aneurysm and Unfit For Surgical Treatment,” Arch. Surg., 104(4), pp. 600–606. [CrossRef] [PubMed]
Larsson, E., Labruto, F., Gasser, T. C., Swedenborg, J., and Hultgren, R., 2011, “Analysis of Aortic Wall Stress and Rupture Risk in Patients With Abdominal Aortic Aneurysm With a Gender Perspective,” J. Vasc. Surg., 54(2), pp. 295–299. [CrossRef] [PubMed]
MacSweeney, S. T., Ellis, M., Worrell, P. C., Greenhalgh, R. M., and Powell, J. T., 1994, “Smoking and Growth Rate of Small Abdominal Aortic Aneurysms,” Lancet, 344(8923), pp. 651–652. [CrossRef] [PubMed]
Martufi, G., Di Martino, E. S., Amon, C. H., Muluk, S. C., and Finol, E. A., 2009, “Three–Dimensional Geometrical Characterization of Abdominal Aortic Aneurysms: Image-Based Wall Thickness Distribution,” J. Biomech. Eng., 131(6), p. 061015. [CrossRef] [PubMed]
Sacks, M. S., Vorp, D. A., Raghavan, M. L., Federle, M. P., and Webster, M. W., 1999, “In Vivo Three-Dimensional Surface Geometry of Abdominal Aortic Aneurysms,” Ann. Biomed. Eng., 27, pp. 469–479. [CrossRef] [PubMed]
Shum, J., Martufi, G., Di Martino, E. S., Washington, C. B., Grisafi, J., Muluk, S. C., and Finol, E. A., 2011, “Quantitative Assessment of Abdominal Aortic Aneurysm Shape,” Ann. Biomed. Eng., 39(1), pp. 277–286. [CrossRef] [PubMed]
Sakalihasan, N., Hustinx, R., and Limet, R., 2004, “Contribution of PET Scanning to the Evaluation of Abdominal Aortic Aneurysm,” Semin. Vasc. Surg., 17(2), pp. 144–153. [CrossRef] [PubMed]
Stenbaek, J., Kalin, B., and Swedenborg, J., 2000, “Growth of Thrombus May be a Better Predictor of Rupture Than Diameter in Patients With Abdominal Aortic Aneurysms,” Eur. J. Vasc. Endovasc., 20, pp. 466–469. [CrossRef]
Fillinger, M. F., Raghavan, M. L., Marra, S., Cronenwett, J., and Kennedy, F. E., 2003, “Prediction of Rupture Risk In Abdominal Aortic Aneurysm During Observation: Wall Stress Versus Diameter,” J. Vasc. Surg., 37, pp. 724–732. [CrossRef] [PubMed]
Gasser, T. C., Auer, M., Labruto, F., Swedenborg, J., and Roy, J., 2010, “Biomechanical Rupture Risk Assessment of Abdominal Aortic Aneurysms: Model Complexity Versus Predictability of Finite Element Simulations,” Eur. J. Vasc. Endovasc., 40, pp. 176–185. [CrossRef]
Heng, M. S., Fagan, M. J., Collier, W., Desai, G., McCollum, P. T., and Chetter, I. C., 2008, “Peak Wall Stress Measurement in Elective and Acute Abdominal Aortic Aneurysms,” J. Vasc. Surg., 47, pp. 17–22. [CrossRef] [PubMed]
Venkatasubramaniam, A. K., Fagan, M. J., Mehta, T., Mylankal, K. J., Ray, B., Kuhan, G., Chetter, I. C., and McCollum, P. T., 2004, “A Comparative Study of Aortic Wall Stress Using Finite Element Analysis For Ruptured And Non-Ruptured Abdominal Aortic Aneurysms,” Eur. J. Vasc. Surg., 28, pp. 168–176. [CrossRef]
Maier, A., Gee, M. W., Reeps, C., Pongratz, J., Eckstein, H. H., and Wall, W. A., 2010, “A Comparison of Diameter, Wall Stress, And Rupture Potential Index For Abdominal Aortic Aneurysm Rupture Risk Prediction,” Ann. Biomed. Eng., 38, pp. 3124–3134. [CrossRef] [PubMed]
Vande Geest, J. P., Wang, D. H. J., Wisniewski, S. R., Makaroun, M. S., and Vorp, D. A., 2006(a), “A Noninvasive Method For Determination of Patient-Specific Wall Strength Distrubtion In Abdominal Aortic Aneurysms,” Ann. Biomed. Eng., 34, pp. 1098–1106. [CrossRef] [PubMed]
Doyle, B. J., Callanan, A., Walsh, M. T., Grace, P. A., and McGloughlin, T. M., 2009, “A Finite Element Analysis Rupture Index (FEARI) As An Additional Tool For Abdominal Aortic Aneurysm Rupture Prediction,” Vasc. Dis. Prev., 6, pp. 114–121. [CrossRef]
Gasser, T. C., 2011(a), “An Irreversible Constitutive Model For Fibrous Soft Biological Tissue: A 3D Microfiber Approach With Demonstrative Application To Abdominal Aortic Aneurysms,” Acta Biomater., 7(6), pp. 2457–2466. [CrossRef]
Shum, J., DiMartino, E. S., Goldhammer, A., Goldman, D., Acker, L., Patel, G., Ng, J. H., Martufi, G., and Finol, E. A., 2010, “Semi-Automatic Vessel Wall Detection And Quantification of Wall Thickness In Ct Images of Human Abdominal Aortic Aneurysms,” Med. Phys.37, pp. 638–648. [CrossRef] [PubMed]
Raghavan, M. L., Kratzberg, J., Castro de Tolosa, E. M., Hanaoka, M. M., Walker, P., and da Silva, E. S., 2006, “Regional Distribution of Wall Thickness and Failure Properties of Human Abdominal Aortic Aneurysm,” J. Biomech., 39, pp. 3010–3016. [CrossRef] [PubMed]
Di Martino, E. S., Bohra, A., Vande Geest, J. P., Gupta, N., Makaroun, M., and Vorp, D. A., 2006, “Biomechanical Properties of Ruptured Versus Electively Repaired Abdominal Aortic Aneurysm Wall Tissue,” J. Vasc. Surg., 43, pp. 570–576. [CrossRef] [PubMed]
Raghavan, M. L., Hanaoka, M. M., Kratzberg, J. A., de Lourdes Higuchi, M., and da Silva, E.S., 2011, “Biomechanical Failure Properties And Microstructural Content of Ruptured And Unruptured Abdominal Aortic Aneurysms,” J. Biomech., 44(13), pp. 2501–2507. [CrossRef] [PubMed]
Reeps, C., Maier, A., Pelisek, J., Härtl, F., Grabher-Meier, V., Wall, W. A., Essler, M., Eckstein, H.-H., and Gee, M. W., 2012, “Measuring and Modeling Patient-Specific Distributions of Material Properties in Abdominal Aortic Aneurysm Wall,” Biomech. Model. Mechanobiol., doi 10.1007/s10237-012-0436-1 (online).
Vallabhaneni, S. R., Gilling-Smith, G. L., How, T. V., Carter, S. D., Brennan, J. A., and Harris, P. L., 2004, “Heterogeneity of Tensile Strength And Matrix Metalloproteinase Activity In The Wall Of Abdominal Aortic Aneurysms,” J. Endovasc. Ther., 11, pp. 494–502. [CrossRef] [PubMed]
Takamizawa, K., and Hayashi, K., 1987, “Strain Energy Density Function And Uniform Strain Hypothesis For Arterial Mechanics,” J. Biomech., 20(1), pp. 7–17. [CrossRef] [PubMed]
Forsell, C., Swedenborg, J., Roy, J., and Gasser, T. C., 2012, “The Quasi-Static Failure Properties of the Abdominal Aortic Aneurysm Wall Estimated by a Mixed Experimental-Numerical Approach,” Ann. Biomed. Eng., [CrossRef] (in press).
Raghavan, M. L., and Vorp, D. A., 2000, “Toward a Biomechanical Tool to Evaluate Rupture Potential of Abdominal Aortic Aneurysm: Identification of a Finite Strain Constitutive Model And Evaluation of its Applicability,” J. Biomech., 33, pp. 475–482. [CrossRef] [PubMed]
Di Martino, E. S., and Vorp, D. A., 2003, “Effect of Variation In Intraluminal Thrombus Constitutive Properties On Abdominal Aortic Aneurysm Wall Stress,” Ann. Biomed. Eng., 31, pp. 804–809. [CrossRef] [PubMed]
De Putter, S. B., Wolters, J. B. M., Ruttena, M. C. M., Breeuwer, M., Gerritsen, F. A., and van de Vosse, F. N., 2006, “Patient-Specific Initial Wall Stress In Abdominal Aortic Aneurysms With A Backward Incremental Method,” J. Biomech., 40, pp. 1081–1090. [CrossRef] [PubMed]
Raghavan, M. L., Baoshun, M. A., and Filinger, M. F., 2006, “Non-Invasive Determination of Zero-Pressure Geometry Of Arterial Aneurysms,” Ann. Biomed. Eng., 34(9), pp. 1414–1419. [CrossRef] [PubMed]
Polzer, S., Bursa, J., Gasser, T. C., Staffa, R., and Vlachovsky, R., “A Numerical Implementation to Predict Residual Strains From the Homogeneous Stress Hypothesis With Application to Abdominal Aortic Aneurysms” (submitted).
Polzer, S., Gasser, T. C., Swedenborg, J., and Bursa, J., 2011, “The Impact of Intraluminal Thrombus Failure on the Mechanical Stress in the Wall of Abdominal Aortic Aneurysms,” Eur. J. Vasc. Surg., 41, pp. 467–473. [CrossRef]
Roach, M. R., and Burton, A. C., 1957, “The Reason for the Shape of the Distensibility Curves of Arteries,” Can. J. Physiol. Pharmacol., 35, pp. 681–690 [CrossRef].
Greenwald, S., and Berry, C., 1980, “The Effect of Alterations of Scleroprotein Content on the Static Mechanical Properties of the Arterial Wall,” Adv. Physiol. Sci., 8, pp. 203–212.
Bashey, R. I., Cox, R., McCann, J., and Jimenez, S. A., 1989, “Changes in Collagen Biosynthesis, Types, And Mechanics of Aorta In Hypertensive Rats,” J. Lab. Clin. Med.113, pp. 604–611. [PubMed]
Rizzo, R. J., McCarthy, W. J., Dixit, S. N., Lilly, M. P., Shively, V. P., Flinn, W. R., and Yao, J. S. T., 2011, “Collagen Types and Matrix Protein Content In Human Abdominal Aortic Aneurysms,” J. Vasc. Surg., 10, pp. 365–373.
López-Candales, A., Holmes, D. R., Liao, S., Scott, M. J., Wickline, S. A., and Thompson, R. W., 1997, “Decreased Vascular Smooth Muscle Cell Density In Medial Degeneration of Human Abdominal Aortic Aneurysms,” Am. J. Pathol., 150, pp. 993–1007. [PubMed]
Länne, T., Sonesson, B., Bergqvist, D., Bengtsson, H., and Gustafsson, D., 1992, “Diameter and Compliance in the Male Human Abdominal Aorta: Influence Of Age And Aortic Aneurysm,” Eur. J. Vasc. Surg., 6, pp. 178–184. [CrossRef] [PubMed]
Carmo, M., Colombo, L., Bruno, A., Corsi, F. R., Roncoroni, L., Cuttin, M. S., Radice, F., Mussini, E., and Settembrini, P. G., 2002, “Alteration of Elastin, Collagen And Their Cross-Links In Abdominal Aortic Aneurysms,” Eur. J. Vasc. Endovasc. Surg., 23, pp. 543–549. [CrossRef] [PubMed]
Wess, T. J., 2008, Collagen Fibrillar Structure and Hierarchies, in Collagen Structure and Mechanics, edited by P.Fratzl, pp. 49–80, Springer, New York.
Finlay, H. M., McCullough, L., and Canham, P. B., 1995, “Three-Dimensional Collagen Organization of Human Brain Arteries at Different Transmural Pressures,” J. Vasc. Res.32, pp. 301–312. [PubMed]
Gasser, T. C., Ogden, R. W., and Holzapfel, G. A., 2006, “Hyperelastic Modelling of Arterial Layers With Distributed Collagen Fiber Orientations,” J. R. S. Interface, 3, pp. 15–35. [CrossRef]
Gasser, T. C., Gallinetti, S., Xing, X., Forsell, C., Swedenborg, J., and Roy, J., 2012, “Spatial Orientation of Collagen Fibers In The Abdominal Aortic Aneurysms Wall And Its Relation To Wall Mechanics,” Acta Biomater., 8(8), pp. 3091–3103. [CrossRef] [PubMed]
Schriefl, A. J., Zeindlinger, G., Pierce, D. M., Regitnig, P., and Holzapfel, G. A., 2012, “Determination of the Layer-Specific Distributed Collagen Fiber Orientations in Human Thoracic and Abdominal Aortas and Common Iliac Arteries,” J. R. Soc. Interface, 7, pp. 1275–1286. [CrossRef]
Bishop, J. E., and Lindahl, G., 1999, “Regulation of Cardiovascular Collagen Synthesis by Mechanical Load,” Cardiovasc. Res., 42, pp. 27–44. [CrossRef] [PubMed]
Gupta, V., and Grande-Allen, K. J., 2006, “Effects of Static and Cyclic Loading in Regulating Extracellular Matrix Synthesis by Cardiovascular Cells,” Cardiovasc. Res.72, pp. 375–383. [CrossRef] [PubMed]
Barnes, M. J., 1985, “Collagens in Atherosclerosis,” Colloid. Relat. Res., 5, pp. 65–97. [CrossRef]
Lanir, Y.,1983, “Constitutive Equations For Fibrous Connective Tissues,” J. Biomech., 16(1), pp. 1–12. [CrossRef] [PubMed]
Sluijter, J. P. G., Smeets, M. B., Velema, E., Pasterkamp, G., and de Kleijn, D. P. V., 2004, “Increased Collagen Turnover Is Only Partly Associated With Collagen Fiber Deposition In The Arterial Response To Injury,” Cardiovasc. Res.61, pp. 186–195. [CrossRef] [PubMed]
Strauss, B. H., Robinson, R., Batchelor, W. B., Chisholm, R. J., Ravi, G., Natarajan, M. K., Logan, R. A., Mehta, S. R., Levy, D. E., Ezrin, A. M., and Keeley, F. W., 1996, “In Vivo Collagen Turnover Following Experimental Balloon Angioplasty Injury And The Role of Matrix Metalloproteinases,” Circ. Res., 79, pp. 541–550. [CrossRef] [PubMed]
Biasetti, J., Spazzini, P. G., and Gasser, T. C., 2012, “An Integrated Fluido-Chemical Model Towards Modeling The Formation of Intra-Luminal Thrombus In Abdominal Aortic Aneurysms,” Front. Comp. Physiol. Med., 3(266), doi:10.3389/fphys.2012.00266 [CrossRef].
Biasetti, J., Gasser, T. C., Auer, M., Hedin, U., and Labruto, F., 2010, “Hemodynamics of the Normal Aorta Compared To Fusiform And Saccular Abdominal Aortic Aneurysms With Emphasis On A Potential Thrombus Formation Mechanism,” Ann. Biomed. Eng., 38, pp. 380–390. [CrossRef] [PubMed]
Biasetti, J., Hussain, F., and Gasser, T. C., 2011, “Blood Flow and Coherent Vortices in the Normal and Aneurysmatic Aortas. A Fluid Dynamical Approach to Intra-Luminal Thrombus Formation,” J. R. Soc. Interface, 8, pp. 1449–1461. [CrossRef] [PubMed]
Karsaj, I., and Humphrey, J. D., 2009, “A Mathematical Model of Evolving Mechanical Properties of Intraluminal Thrombus,” Biorheology, 46(6), pp. 509–527. [PubMed]
Touat, Z., Ollivier, V., DaiJ., Huisse, M.-G., Bezeaud, A., Sebbag, U., Palombi, T., Rossignol, P., Meilhac, O., Guillin, M.-C., and Michel, J.-B., 2006, “Renewal of Mural Thrombus Releases Plasma Markers and is Involved in Aortic Abdominal Aneurysm Evolution,” Am. J. Pathol., 168, pp. 1022–1030. [CrossRef] [PubMed]
Gasser, T. C., Görgülü, G., Folkesson, M., and Swedenborg, J., 2008, “Failure Properties of Intra-Luminal Thrombus in Abdominal Aortic Aneurysm Under Static and Pulsating Mechanical Loads,” J. Vasc. Surg., 48, pp. 179–188. [CrossRef] [PubMed]
Roy, J., Labruto, F., Beckman, M. O., Danielson, J., Johansson, G., and SwedenborgJ., 2008, “Bleeding into the Intraluminal Thrombus in Abdominal Aortic Aneurysms is Associated With Rupture,” J. Vasc. Surg., 48, pp. 1108–1113. [CrossRef] [PubMed]
Auer, M., and Gasser, T. C., 2010, “Reconstruction and Finite Element Mesh Generation of Abdominal Aortic Aneurysms From Computerized Tomography Angiography Data With Minimal User Interactions,” IEEE Trans. Med. Imag., 29(4), pp. 1022–1028. [CrossRef]
Gasser, T. C., 2012, “Bringing Vascular Biomechanics Into Clinical Practice. Simulation-Based Decisions for Elective Abdominal Aortic Aneurysms Repair,” in B.Calvo and E.Pena, eds., Patient-Specific Computational Modeling (Lecture Notes in Computational Vision and Biomechanics), Springer Science and Business Media, Dordrecht.
Humphrey, J. D., 2002, Cardiovascular Solid Mechanics: Cells, Tissues, and Organs, Springer-Verlag, New York.
Drangova, M., Holdsworth, D. W., Boyd, C. J., Dunmore, P. J., Roach, M. R., and Fenster, A., 1993, “Elasticity and Geometry Measurements of Vascular Specimens Using a High-Resolution Laboratory CT Scanner,” Physiol. Meas., 14, pp. 277–290. [CrossRef] [PubMed]
Vande Geest, J. P., Sacks, M. S., and Vorp, D. A., 2006(b), “A Planar Biaxial Constitutive Relation for the Luminal Layer of Intra-Luminal Thrombus in Abdominal Aortic Aneurysms,” J. Biomech.13, pp. 2347–2354. [CrossRef]
Vaishnav, R. N., Young, J. T., Janicki, J. S., and Patel, J. S., 1972, “Nonlinear Anisotropic Elastic Properties of The Canine Aorta,” Biophys. J., 12(8), pp. 1008–1027. [CrossRef] [PubMed]
Fung, Y. C., Fronek, K., and Patitucci, P., 1979, “Pseudoelasticity of Arteries and the Choice of its Mathematical Expression,” Am. J. Physiol. Hearth C, 237, pp. H620–H621.
Chuong, C. J., and Fung, Y.C., 1983, “Three-Dimensional Stress Distribution in Arteries,” J. Biomech. Eng., 105(3), pp. 268–274. [CrossRef] [PubMed]
Humphrey, J. D., 1995, “Mechanics of the Arterial Wall: Review and Directions,” Crit. Rev. Biomed. Eng., 23(1–2), pp. 1–162. [PubMed]
Delfino, A., Stergiopulos, N., Moore, Jr., J. E., and Meister, J. J., 1997, “Residual Strain Effects on the Stress Field in a Thick Wall Finite Element Model of the Human Carotid Bifurcation,” J. Biomech., 30(8), pp. 777–786. [CrossRef] [PubMed]
Rodriguez, J. F., Martufi, G., Doblaré, M., and Finol, E. A., 2009, “The Effect of Material Model Formulation in the Stress Analysis of Abdominal Aortic Aneurysms,” Ann. Biomed. Eng., 37(11), pp. 2218–2221. [CrossRef] [PubMed]
Rodriguez, J. F., Ruiz, C., Doblaré, M., and Holzapfel, G. A., 2008, “Mechanical Stresses in Abdominal Aortic Aneurysms: Influence of Diameter, Asymmetry, and Material Anisotropy,” J. Biomech. Eng., 130, p. 021023. [CrossRef] [PubMed]
Yeoh, O. H., 1993, “Some Forms of Strain Energy Functions for Rubber,” Rubber Chem. Technol., 66, pp. 754–771. [CrossRef]
Wuyts, F. L., Vanhuyse, V. J., Langewouters, G. J., Decraemer, W. F., Raman, E. R., Buyle, S., 1995, “Elastic Properties of Human Aortas in Relation to Age and Atherosclerosis: A Structural Model,” Phys. Med. Biol., 40, pp. 1577–1597. [CrossRef] [PubMed]
Zulliger, M. A., Fridez, P., Hayashi, K., and Stergiopulos, N., 2004, “A Strain Energy Function for Arteries Accounting for Wall Composition and Structure,” J. Biomech., 37(7), pp. 989–1000. [CrossRef] [PubMed]
Holzapfel, G. A., Gasser, T. C., and Ogden, R. W., 2000, “A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models,” J. Elasticity, 61, pp. 1–48. [CrossRef]
Holzapfel, G. A., Gasser, T. C., and Stadler, M., 2002, “A Structural Model for the Viscoelastic Behavior of Arterial Walls: Continuum Formulation and Finite Element Analysis,” Eur. J. Mech. A, Solids, 21(3), pp. 441–463. [CrossRef]
Martufi, G., and Gasser, T. C., 2011, “A Constitutive Model for Vascular Tissue That Integrates Fibril, Fiber and Continuum Levels With Application to the Isotropic and Passive Properties of the Infrarenal Aorta,” J. Biomech., 44, pp. 2544–2550. [CrossRef] [PubMed]
Ferruzzi, J., Vorp, D. A., and Humphrey, J. D., 2011, “On Constitutive Descriptors of the Biaxial Mechanical Behaviour of Human Abdominal Aorta and Aneurysms,” J. R. Soc. Interface, 8, pp. 435–450. [CrossRef] [PubMed]
Taber, L. A., 1995, “Biomechanics of Growth, Remodeling and Morphogenesis,” Appl. Mech. Rev., 48, pp. 487–545. [CrossRef]
Skalak, R., 1981, “Growth as Finite Displacement Field,” in Proceedings of the IUTAM Symposium on Finite Elasticity, D. E.Carlson and RT Shield, eds., Martinus Nijhoff.
Rodriguez, E. K., Hoger, A., and McCulloch, A. D., 1994, “Stress-Dependent Finite Growth in Soft Elastic Tissues,” J. Biomech., 27(4), pp. 455–467. [CrossRef] [PubMed]
Kroner, E., 1960, “Allgemeine Kontinuumstheorie der Verzerrungen und Eigenspannungen,” Arch. Rat. Mech. Anal., 4, pp. 273–334. [CrossRef]
Rachev, A., Stergiopulos, N., and Meister, J. J., 1998, “A Model for Geometric and Mechanical Adaptation of Arteries to Sustained Hypertension,” J. Biomech. Eng., 120, pp. 9–17. [CrossRef] [PubMed]
Taber, L. A., 1998, “A Model for Aortic Growth Based on Fluid Shear and Fiber Stresses,” J. Biomech. Eng., 120, pp. 348–354. [CrossRef] [PubMed]
Kuhl, E., Maas, R., Himpel, G., and Menzel, A., 2007, “Computational Modeling of Arterial Wall Growth,” Biomechan. Model. Mechanobiol., 6, pp. 321–331. [CrossRef]
Humphrey, J. D., and Rajagopal, K. R., 2002, “A Constrained Mixture Model for Growth and Remodeling of Soft Tissues,” Mater. Model. Methods Appl. Sci., 12, pp. 407–430. [CrossRef]
Watton, P. N., and Hill, N. A., 2009, “Evolving Mechanical Properties of A Model of Abdominal Aortic Aneurysm,” Biomech. Model. Mechanobiol., 8, pp. 25–42. [CrossRef] [PubMed]
Watton, P. N., Heil, M., and Hill, N. A., 2004, “A Mathematical Model for the Growth of the Abdominal Aortic Aneurysm,” Biomech. Model. Mechanobiol., 3, pp. 98–113. [CrossRef] [PubMed]
Sheidaei, A., Hunley, S. C., Zeinali-Davarani, S., Raguin, L. G., and Baek, S., 2011, “Simulation of Abdominal Aortic Aneurysm Growth With Updating Hemodynamic Loads Using a Realistic Geometry,” Med. Eng. Phys., 33(1), pp. 80–88. [CrossRef] [PubMed]
Wilson, J. S., Baek, S., and Humphrey, J. D., 2012, “Importance of Initial Aortic Properties on the Evolving Regional Anisotropy, Stiffness and Wall Thickness of Human Abdominal Aortic Aneurysms,” J. R. Soc. Interface, 9(74), pp. 2047–2058. [CrossRef] [PubMed]
Menzel, A., and Waffenschmidt, T., 2009, “A Microsphere-Based Remodelling Formulation For Anisotropic Biological Tissues,” Philos. Trans. R. Soc. London, Ser. A, 367(1902), pp. 3499–3523. [CrossRef]
MartufiG., and Gasser, T. C., 2012, “Histo-Mechanical Modeling of the Wall of Abdominal Aorta Aneurysms,” ARGESIM Report No. S38 - Preprints MATHMOD 2012 Vienna - Full Paper Volume, Inge Troch, Felix Breitenecker.
Martufi, G., and Gasser, T. C., 2012, “Turnover of Fibrillar Collagen in Soft Biological Tissue With Application to the Expansion of Abdominal Aortic Aneurysms,” J. R. Soc. Interface, 9(77), pp. 3366–3377. [CrossRef] [PubMed]
DiMartino, E., Mantero, S., and Inzoli, F., 1998, “Biomechanics of Abdominal Aortic Aneurysm in the Presence of Endoluminal Thrombus: Experimental Characterisation And Structural Static Computational Analysis,” Eur. J. Vasc. Endovasc., 15, pp. 290–299. [CrossRef]
Gasser, T. C., Martufi, G., Auer, M., Folkesson, M., and Swedenborg, J., 2010, “Micromechanical Characterization of Intra-Luminal Thrombus Tissue From Abdominal Aortic Aneurysms,” Ann. Biomed. Eng., 38(2), pp. 371–379. [CrossRef] [PubMed]
Armentano, R. L., Levenson, J., Barra, J. G., Fischer, E. I., Breitbart, G. J., Pichel, R. H., and Simon, A., 1991, “Assessment of Elastin and Collagen Contribution to Aortic Elasticity in Conscious Dogs,” Am. J. Physiol., 260, pp. H1870–H1877. [PubMed]
Greenwald, S. E., Moore, Jr., J. E., Rachev, A., Kane, T. P., and Meister, J. J., 1997, “Experimental Investigation of the Distribution of Residual Strains in the Artery Wall,” J. Biomech. Eng., 119, pp. 438–444. [CrossRef] [PubMed]
Li, Q., Muragaki, Y., Hatamura, I., Ueno, H., and Ooshima, A., 1998(b), “Stretch-Induced Collagen Synthesis in Cultured Smooth Muscle Cells From Rabbit Aortic Media and a Possible Involvement of Angiotensin II and Transforming Growth Factor-Beta,” J. Vasc. Res., 35, pp. 93–103. [CrossRef]
Taylor, C. A., and Humphrey, J. D., 2009, “Open Problems in Computational Vascular Biomechanics: Hemodynamics and Arterial Wall Mechanics,” Comput. Methods Appl. Mech. Eng., 198, pp. 3514–3523. [CrossRef] [PubMed]
Federico, S., and Gasser, T. C., 2010, “Nonlinear Elasticity of Biological Tissues With Statistical Fiber Orientation,” J. R. Soc. Interface, 7(47), pp. 955–966. [CrossRef] [PubMed]
Gasser, T. C., and Forsell, C., 2011(b), “The Numerical Implementation of Invariant-Based Viscoelastic Formulations at Finite Strains. An Anisotropic Model for the Passive Myocardium,” Comput. Methods Appl. Mech., 200, pp. 3637–3645. [CrossRef]
Gasser, T. C., and Holzapfel, G. A., 2002, “A Rate-Independent Elastoplastic Constitutive Model for (Biological) Fiber-Reinforced Composites at Finite Strains: Continuum Basis, Algorithmic Formulation and Finite Element Implementation,” Comput. Mech., 29, pp. 340–360. [CrossRef]


Grahic Jump Location
Fig. 1

Box and whisker plots of peak wall stress (PWS) of ruptured (gray) and diameter-matching nonruptured (white) aneurysms. The number of aneurysms included in the analysis is given by n, whereas ratios between the 25% trimmed means and the p-value are denoted by k and p, respectively. Image taken from [47].

Grahic Jump Location
Fig. 2

Three-dimensional collagen fiber orientation in the AAA wall. Bingham distribution function (red) fitted to the experimentally measured fiber orientation distribution (light blue) in the AAA wall. Image taken from [78].

Grahic Jump Location
Fig. 3

Conceptual model of a collagen fiber

Grahic Jump Location
Fig. 4

Definition of the homeostatic deformation λph of a collagen fiber aligned along the referential orientation N. Collagen fiber stretches below and above λph define mechanical stimuli ζ<1 and ζ>1, respectively. The PDF denotes the triangular probability density function that defines the undulation of collagen fibrils within the collagen fiber. The stress in the collagen fiber is defined according to Eq. (1).

Grahic Jump Location
Fig. 5

Wall stress prediction neglecting (left column) and considering (right column) the turnover of collagen in a patient-specific AAA. Top row shows the maximum principal Cauchy stress at the outer surface. Bottom row presents a view inside the AAA and shows the maximum principal Cauchy stress distally the maximum diameter. Note the inhomogeneous stress across the wall and the elevated stress levels at the inner surface shown in (c).



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In