Bending Vibrations of the Femur and the Oscillatory Behavior of a Cemented Femoral Hip Endoprosthesis

[+] Author and Article Information
M. Thomsen, W. Görtz

Orthopädische Klinik, University of Heidelberg, Heidelberg, Germany

A. Görtz, H. Nägerl

IV. Physikalisches Institut, University of Göttingen, Göttingen, Germany

U. V. Nägerl

Neurology Department, UCLA School of Medicine, Los Angeles, CA 90024

D. Kubein-Meesenburg

Abt. Kieferorthopädie des Zentrums ZMK, University of Göttingen, Göttingen, Germany

J. Fanghänel

Institut für Anatomie, University of Greifswald, Greifswald, Germany

J Biomech Eng 122(4), 416-422 (Feb 28, 2000) (7 pages) doi:10.1115/1.1286317 History: Received March 24, 1998; Revised February 28, 2000
Copyright © 2000 by ASME
Your Session has timed out. Please sign back in to continue.


Walker,  P. S., 1987, “Strains and Micromotions of Press-Fit Femoral Stem Prostheses,” J. Biomech., 20, pp. 693–702.
Nunn,  D., Freeman,  M. A. R., Tanner,  K. E., and Bonfield,  W., 1989, “Torsional Stability of the Femoral Component of Hip Arthroplasty. Response to an Anteriorly Applied Load,” J. Bone Jt. Surg., Br. Vol., 71-B, pp. 452–455.
Schneider,  E., Eulenberger,  J., Steiner,  W., Wyder,  D., Friedman,  R. J., and Perren,  S. M., 1989, “Experimental Method for the in Vitro Testing of the Initial Stability of Cementless Hip Prostheses,” J. Biomech., 22, pp. 735–744.
Burke,  D. W., O’Connor,  D. O., Zalenski,  E. B., Jasty,  M., and Harris,  W. H., 1991, “Micromotion of Cemented and Uncemented Femoral Components,” J. Bone Jt. Surg., Br. Vol., 73-B, pp. 33–37.
Nägerl,  H., Kubein-Meesenburg,  D., Schäfer,  W., Cotta,  H., Thomson,  M., v. Strachwitz,  B., and Fanghänel,  J., 1996, “Messung der räumlichen Mikrobewegung des Femurschaftes von Endoprothesen in Abhängigkeit des räumlichen Kraftsystems,” Z. Orthop.,134, pp. 99–110.
Pilliar,  R. M., Lee,  J. M., and Maniatopoulos,  C., 1986, “Observation on the Effect of Movement on Bone Ingrowth Into Porous-Surfaced Implants,” Clin. Orthop. Relat. Res., 208, pp. 108–133.
Engh,  C. A., O’Connor,  D., Jasty,  M., McCovern,  T. F., Bobyn,  D., and Harris,  W. H., 1992, “Quantification of Implant Micromotion, Strain Shielding, and Bone Resorption With Porous-Coated Anatomic Locking Femoral Prostheses,” Clin. Orthop. Relat. Res., 225, pp. 13–29.
Bergmann,  G., Graichen,  F., and Rohlmann,  A., 1993, “Hip Loading During Walking and Running Measured in Two Patients,” J. Biomech., 26, pp. 969–990.
Davy,  D. T., Kotzar,  G. M., Brown,  R. H., Heipel,  K. G., Goldberg,  V. M., Heipel,  K. G., Berilla,  J., and Burstein,  A. H., 1976, “Telemetric Force Measurement Across the Hip After Total Hip Arthroplasty,” J. Bone Jt. Surg., 58-A, pp. 618–623.
Mjörberg,  B., Hansson,  L. I., and Selvik,  G., 1984, “Instability of Total Hip Prostheses at Rotational Stress,” Acta Orthop. Scand., 55, pp. 504–506.
Suguiyama,  H., Whiteside,  L. A., and Engh,  C. A., 1992, “Torsional Fixation of the Femoral Component in Total Hip Arthroplasty: The Effect of Surgical Press-Fit Techniques” Clin. Orthop. Relat. Res., 275, pp. 187–193.
Pieschocki, R., 1961, Makroskopische Präparationstechnik. Leitfaden für das Sammeln, Präparieren und Konservieren. Teil 1. Wirbeltiere, Geest & Porter, Leipzig.
Teichmann, H., 1973, “Physikalische Anwendung der Vektor- und Tensorrechnung,” Bd. 1, 3. Aufl., B.-I.-Hochschultaschenbücher, Bibliogr. Inst., Mannheim.
Bischof, H., 1993, “Schallwelen in langen Röhrenknochen: Eine Methode zur Bestimmung der Biegesteifigkeit und maximaler Bruchkraft,” Inaugural-Dissertation, Universität Zürich.
Agins,  H. J., and Salvati,  E. A., 1990, “The Nine to Fifteen Year Follow-Up of One Stage Bilateral Total Hip Arthroplasty,” Orthop. Relat. Sci.,26, pp. 109–120.


Grahic Jump Location
(a) Mechanical arrangement (schematic): A=application point of stimulating force in x direction; B=z positions of the stereo pickups, which record the bone oscillations. Total length of the femur in relation to center M=44.5 cm. (b) Photograph of the mechanical arrangement: a=electrodynamic load-speaker, b=embedding, c=prosthesis head, d=three electrodynamic stereo pickups (to monitor head oscillations), db=two electrodynamic stereo pickups (to monitor bone oscillations). Thickness of the plaster embedding =6 cm.
Grahic Jump Location
(a) Location of the stereo pickups on the prosthesis head. M=center of the prosthesis head and origin of the fixed coordinate system. In each case, the pickups recorded two components of the velocity of the contact points: the components which are (a) perpendicular to the head surface, and (b) parallel to the head surface and perpendicular to the groove of the record piece. (b) Location of the stereo pickups on the bone. B=center of the bone disk.
Grahic Jump Location
Circuit diagram of the analog data processing
Grahic Jump Location
(a) Frequency spectrum of the velocity amplitudes, determined by the six channels of the three stereo pickups at the prosthesis head. Ωi=resonance frequencies. (b) Frequency spectrum of the velocity amplitudes, determined by the four channels of the two stereo pickups on the fermoral bone head. Ωi=resonance frequencies.
Grahic Jump Location
12 Hz vibration. The instantaneous helical axis PH of the head was stationary and medially shifted outside the head. The corresponding instantaneous axis PB was also almost stationary, but laterally shifted. The angular velocities μzb and μzb have the same direction.
Grahic Jump Location
Resonance Ω1: The components of translation and rotation as functions of time for the prosthesis head and the femoral bone (true scale). The phase was related to the stimulating force according to: Fx=−Fxo cos(Ω1t).
Grahic Jump Location
Stationary instantaneous rotational axes of the resonances Ω2=331 Hz (a), Ω3=340 Hz (b), and Ω4=389 Hz (c).



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In