A thermal model was needed to predict temperatures in a perfused tissue, which satisfied the following three criteria. One, the model satisfied conservation of energy. Two, the heat transfer rate from blood vessels to tissue was modeled without following a vessel path. Three, the model applied to any unheated and heated tissue. To meet these criteria, a generic bioheat transfer model (BHTM) was derived here by conserving thermal energy in a heated vascularized finite tissue and by making a few simplifying assumptions. Two linear coupled differential equations were obtained with the following two variables: tissue volume averaged temperature and blood volume averaged temperature. The generic model was compared with the widely employed empirical Pennes’ BHTM. The comparison showed that the Pennes’ perfusion term $wCp(1\u2212\epsilon )$ should be interpreted as a local vasculature dependent heat transfer coefficient term. Suggestions are presented for further adaptations of the general BHTM for specific tissues using imaging techniques and numerical simulations.