Influence of Decorin and Biglycan on Mechanical Properties of Multiple Tendons in Knockout Mice

[+] Author and Article Information
Paul S. Robinson, Elan Kazam

McKay Orthopaedic Research Laboratory, University of Pennsylvania, 424 Stemmler Hall, 36th and Hamilton Walk, Philadelphia, PA 19104-6081

Tung-Fu Huang

Taipei Veterans General Hospital and National Yang-Ming University, Taipei, Taiwan

Renato V. Iozzo, David E. Birk

Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19104-6081

Louis J. Soslowsky

McKay Orthopaedic Research Laboratory, University of Pennsylvania, 424 Stemmler Hall, 36th and Hamilton Walk, Philadelphia, PA 19104-6081e-mail: soslowsk@mail.med.upenn.edu

J Biomech Eng 127(1), 181-185 (Mar 08, 2005) (5 pages) doi:10.1115/1.1835363 History: Received March 31, 2004; Revised August 20, 2004; Online March 08, 2005
Copyright © 2005 by ASME
Your Session has timed out. Please sign back in to continue.


Scott,  J. E., Dyne,  K. M., Thomlinson,  A. M., Ritchie,  M., Bateman,  J., Cetta,  G., and Valli,  M., 1998, “Human Cells Unable to Express Decoron Produced Disorganized Extracellular Matrix Lacking Shape Modules (Interfibrillar Proteoglycan Bridges),” Exp. Cell Res., 243, pp. 59–66.
Pins,  G. D., Christiansen,  D. L., Patel,  R., and Silver,  F. H., 1997, “Self-Assembly of Collagen Fibers. Influence of Fibrillar Alignment and Decorin on Mechanical Properties,” Biophys. J., 73, pp. 2164–2172.
Kuc,  I. M., and Scott,  P. G., 1997, “Increased Diameters of Collagen Fibrils Precipitated in Vitro in the Presence of Decorin From Various Connective Tissues,” Connect. Tissue Res., 36, pp. 287–296.
Sini,  P., Denti,  A., Tira,  M. E., and Balduini,  C., 1997, “Role of Decorin on in Vitro Fibrillogenesis of Type I Collagen,” Glycoconjugate J., 14, pp. 871–874.
Schonherr,  E., Witsch-Prehm,  P., Harrach,  B., Robenek,  H., Rauterberg,  J., and Kresse,  H., 1995, “Interaction of Biglycan With Type I Collagen,” J. Biol. Chem., 270, pp. 2776–2783.
Corsi,  A., Xu,  T., Chen,  X. D., Boyde,  A., Liang,  J., Mankani,  M., Sommer,  B., Iozzo,  R. V., Eichstetter,  I., Robey,  P. G., Bianco,  P., and Young,  M. F., 2002, “Phenotypic Effects of Biglycan Deficiency are Linked to Collagen Fibril Abnormalities, are Synergized by Decorin Deficiency, and Mimic Ehlers–Danlos-Like Changes in Bone and Other Connective Tissues,” J. Bone Miner. Res., 17, pp. 1180–1189.
Jepsen,  K. J., Wu,  F., Peragallo,  J. H., Paul,  J., Roberts,  L., Ezura,  Y., Oldberg,  A., Birk,  D. E., and Chakravarti,  S., 2002, “A Syndrome of Joint Laxity and Impaired Tendon Integrity in Lumican- and Fibromodulin-Deficient Mice,” J. Biol. Chem., 277, pp. 35532–35540.
Danielson,  K. G., Baribault,  H., Holmes,  D. F., Graham,  H., Kadler,  K. E., and Iozzo,  R. V., 1997, “Targeted Disruption of Decorin Leads to Abnormal Collagen Fibril Morphology and Skin Fragility,” J. Cell Biol., 136, pp. 729–743.
Dahners,  L. E., Lester,  G. E., and Caprise,  P., 2000, “The Pentapeptide NKISK Affects Collagen Fibril Interactions in a Vertebrate Tissue,” J. Orthop. Res., 18, pp. 532–536.
Raspanti,  M., Alessandrini,  A., Ottani,  V., and Ruggeri,  A., 1997, “Direct Visualization of Collagen-Bound Proteoglycans by Tapping-Mode Atomic Force Microscopy,” J. Struct. Biol., 119, pp. 118–122.
Scott,  J. E., 1988, “Proteoglycan–Fibrillar Collagen Interactions,” Biochem. J., 252, pp. 313–323.
Craig,  A. S., Birtles,  M. J., Conway,  J. F., and Parry,  D. A., 1989, “An Estimate of the Mean Length of Collagen Fibrils in Rat Tail-Tendon as a Function of Age,” Connect. Tissue Res., 19, pp. 51–62.
Trotter,  J. A., and Koob,  T. J., 1989, “Collagen and Proteoglycan in a Sea Urchin Ligament With Mutable Mechanical Properties,” Cell Tissue Res., 258, pp. 527–539.
Vogel,  K. G., and Heinegard,  D., 1985, “Characterization of Proteoglycans From Adult bovine tendon,” J. Biol. Chem., 260, pp. 9298–9306.
Chen,  C. T., Malkus,  D. S., and Vanderby,  R., 1998, “A Fiber Matrix Model For Interstitial Fluid Flow and Permeability in Ligaments and Tendons,” Biorheology, 35, pp. 103–118.
Butler,  S. L., Kohles,  S. S., Thielke,  R. J., Chen,  C., and Vanderby,  R., 1997, “Interstitial Fluid Flow in Tendons or Ligaments: a Porous Medium Finite Element Simulation,” Med. Biol. Eng. Comput., 35, pp. 742–746.
Lam,  T. C., Frank,  C. B., and Shrive,  N. G., 1993, “Changes in the Cyclic and Static Relaxations of the Rabbit Medial Collateral Ligament Complex During Maturation,” J. Biomech., 26, pp. 9–17.
Woo,  S. L., Johnson,  G. A., and Smith,  B. A., 1993, “Mathematical Modeling of Ligaments and Tendons,” J. Biomech. Eng., 115, pp. 468–473.
Chimich,  D., Shrive,  N., Frank,  C., Marchuk,  L., and Bray,  R., 1992, “Water Content Alters Viscoelastic Behavior of the Normal Adolescent Rabbit Medial Collateral Ligament,” J. Biomech., 25, pp. 831–837.
Berenson,  M. C., Blevins,  F. T., Plaas,  A. H., and Vogel,  K. G., 1996, “Proteoglycans of Human Rotator Cuff Tendons,” J. Orthop. Res., 14, pp. 518–525.
Riley,  G. P., Harrall,  R. L., Constant,  C. R., Chard,  M. D., Cawston,  T. E., and Hazleman,  B. L., 1994, “Glycosaminoglycans of Human Rotator Cuff Tendons: Changes With Age and in Chronic Rotator Cuff Tendinitis,” Ann. Rheum. Dis., 53, pp. 367–376.
Carvalho,  H. F., Felisbino,  S. L., Covizi,  D. Z., Della Colleta,  H. H., and Gomes,  L., 2000, “Structure and Proteoglycan Composition of Specialized Regions of the Elastic Tendon of the Chicken Wing,” Cell Tissue Res., 300, pp. 435–446.
Waggett,  A. D., Ralphs,  J. R., Kwan,  A. P., Woodnutt,  D., and Benjamin,  M., 1998, “Characterization of Collagens and Proteoglycans at the Insertion of the Human Achilles Tendon,” Matrix Biol., 16, pp. 457–470.
Vogel,  K. G., Ordog,  A., Pogany,  G., Olah,  J., 1993, “Proteoglycans in the Compressed Region of Human Tibialis Posterior Tendon and in Ligaments,” J. Orthop. Res., 11, pp. 68–77.
Thomopoulos,  S., Williams,  G. R., Gimbel,  J. A., Favata,  M., and Soslowsky,  L. J., 2003, “Variation of Biomechanical, Structural, and Compositional Properties Along the Tendon to Bone Insertion Site,” J. Orthop. Res., 21, pp. 413–419.
Perez-Castro,  A. V., and Vogel,  K. G., 1999, “In Situ Expression of Collagen and Proteoglycan Genes During Development of Fibrocartilage in Bovine Deep Flexor Tendon,” J. Orthop. Res., 17, pp. 139–148.
Christiansen,  D. L., Huang,  E. K., and Silver,  F. H., 2000, “Assembly of Type I Collagen: Fusion of Fibril Subunits and the Influence of Fibril Diameter on Mechanical Properties,” Matrix Biol., 19, pp. 409–420.
Robinson,  P. S., Lin,  T. W., Reynolds,  P. R., Derwin,  K. A., Iozzo,  R. V., and Soslowsky,  L. J., 2004, “Strain Rate Sensitive Mechanical Properties of Tendon Fascicles from Mice with Genetically Engineered Alterations in Collagen and Decorin,” J. Biomech. Eng. 126, 252–257.
Robinson,  P. S., Lin,  T. W., Jawad,  A. F., Iozzo,  R. V., and Soslowsky,  L. J., 2004, “Investigating Tendon Fascicle Structure–Function Relationships in a Transgenic-Age Mouse Model Using Multiple Regression Models,” Ann. Biomed. Eng. 32, pp. 924–931.
Elliott,  D. M., Robinson,  P. S., Gimbel,  J. A., Sarver,  J. J., Abboud,  J. A., Iozzo,  R. V., and Soslowsky,  L. J., 2003, “Effect of Altered Matrix Proteins on Quasilinear Viscoelastic Properties in Transgenic Mouse Tail Tendons,” Ann. Biomed. Eng., 31, pp. 599–605.
Derwin,  K. A., Soslowsky,  L. J., Kimura,  J. H., and Plaas,  A. H., 2001, “Proteoglycans and Glycosaminoglycan Fine Structure in the Mouse Tail Tendon Fascicle,” J. Orthop. Res., 19, pp. 269–277.
Derwin,  K. A., and Soslowsky,  L. J., 1999, “A Quantitative Investigation of Structure–Function Relationships in a Tendon Fascicle Model,” J. Biomech. Eng., 121, pp. 598–604.
Xu,  T., Bianco,  P., and Fisher,  L. , 1998, “Targeted Disruption of the Byglycan Gene Leads to an Osteoporosis-Like Phenotype in Mice,” Nat. Genet., 20, pp. 78–82.
Soslowsky,  L. J., Thomopoulos,  S., Tun,  S., Flanagan,  C. L., Keefer,  C. C., Mastaw,  J., and Carpenter,  J. E., 2000, “Neer Award 1999. Overuse Activity Injures the Supraspinatus Tendon in an Animal Model: A Histologic and Biomechanical Study,” J. Shoulder Elbow Surg., 9, pp. 79–84.
Soslowsky,  L. J., An,  C. H., Johnston,  S. P., and Carpenter,  J. E., 1994, “Geometric and Mechanical Properties of the Coracoacromial Ligament and Their Relationship to Rotator Cuff Disease,” Clin. Orthop. Relat. Res., 304, pp. 10–17.
Derwin,  K. A., Soslowsky,  L. J., Green,  W. D., and Elder,  S. H., 1994, “A New Optical System For the Determination of Deformations and Strains: Calibration Characteristics and Experimental Results,” J. Biomech., 27, pp. 1277–1285.
Probst,  A., Palmes,  D., Freise,  H., Langer,  M., Joist,  A., and Spiegel,  H. U., 2000, “A New Clamping Technique For Biomechanical Testing of Tendons in Small Animals. aprobst@uni-muenster.de,” J. Invest Surg., 13, pp. 313–318.
Hae Yoon,  J., Brooks,  R., Hwan Kim,  Y, Terada,  M., and Halper,  J., 2003, “Proteoglycans in Chicken Gastrocnemius Tendons Change with Exercise,” Arch. Biochem. Biophys., 412, pp. 279–286.
Woo,  S. L., Smith,  D. W., Hildebrand,  K. A., Zeminski,  J. A., and Johnson,  L. A., 1998, “Engineering the Healing of the Rabbit Medial Collateral Ligament,” Med. Biol. Eng. Comput., 36, pp. 359–364.
Robbins,  J. R., Evanko,  S. P., and Vogel,  K. G., 1997, “Mechanical Loading and TGF-beta Regulate Proteoglycan Synthesis in Tendon,” Arch. Biochem. Biophys., 342, pp. 203–211.
Bosch,  U., Gassler,  N., and Decker,  B., 1998, “Alterations of Glycosaminoglycans During Patellar Tendon Autograft Healing After Posterior Cruciate Ligament Replacement. A Biochemical Study in a Sheep Model,” Am. J. Sports Med., 26, pp. 103–108.
Bosch,  U., Decker,  B., Kasperczyk,  W. , 1992, “The Relationship of Mechanical Properties to Morphology in Patellar Tendon Autografts After Posterior Cruciate Ligament Replacement in Sheep,” J. Biomech., 25, pp. 821–830.
Alfredson,  H., Lorentzon,  M., Backman,  S., Backman,  A., and Lerner,  U. H., 2003, “cDNA-Arrays and Real-Time Quantitative PCR Techniques in the Investigation of Chronic Achilles Tendinosis,” J. Orthop. Res., 21, pp. 970–975.
Thomopoulos,  S., Hattersley,  G., Rosen,  V., Mertens,  M., Galatz,  L., Williams,  G. R., and Soslowsky,  L. J., 2002, “The Localized Expression of Extracellular Matrix Components in Healing Tendon Insertion Sites: An In Situ Hybridization Study,” J. Orthop. Res., 20, pp. 454–463.
Nakamura,  N., Hart,  D. A., Boorman,  R. S., Kaneda,  Y., Shrive,  N. G., Marchuk,  L. L., Shino,  K., Ochi,  T., and Frank,  C. B., 2000, “Decorin Antisense Gene Therapy Improves Functional Healing of Early Rabbit Ligament Scar With Enhanced Collagen Fibrillogenesis in Vivo,” J. Orthop. Res., 18, pp. 517–523.
Ault,  H. K., and Hoffman,  A. H., 1992, “A Composite Micromechanical Model for Connective Tissues: Part I—Theory,” J. Biomech. Eng., 114, pp. 137–141.
Mikic,  B., Schalet,  B. J., Clark,  R. T., Gaschen,  V., and Hunziker,  E. B., 2001, “GDF-5 Deficiency in Mice Alters the Ultrastructure, Mechanical Properties and Composition of the Achilles Tendon,” J. Orthop. Res., 19, pp. 365–371.
Parry,  D. A., 1988, “The Molecular and Fibrillar Structure of Collagen and its Relationship to the Mechanical Properties of Connective Tissue,” Biophys. Chem., 29, pp. 195–209.
Haut,  R. C., 1985, “The Effect of a Lathyritic Diet on the Sensitivity of Tendon to Strain Rate,” J. Biomech. Eng., 107, pp. 166–174.
Roughley,  P. J., White,  R. J., and Mort,  J. S., 1996, “Presence of Pro-Forms of Decorin and Biglycan in Human Articular Cartilage,” Biochem. J., 318, pp. 779–784.


Grahic Jump Location
Tail tendon fascicle prepared and in the test fixture Bar=2 mm
Grahic Jump Location
Representative plots of prescribed strain (A) and stress response (B) in tail tendon fascicle testing. Dotted line=constant elongation rate to failure tests. Solid line=incremental stress relaxation tests. Percent relaxation was determined from the stress relaxation curves as the difference between peak stress (a) and final stress (b). The maximum stress (c) and modulus (m) were determined from the constant elongation rate to failure tests.
Grahic Jump Location
Patellar (left) and flexor digitorum longus (right) tendons in test fixtures; bar=5 mm
Grahic Jump Location
Representative plots of prescribed strain (A) and stress response (B) in patellar and flexor digitorum longus testing. Percent relaxation was determined from the stress relaxation curves as the difference between peak stress (a) and final stress (b). The maximum stress (c) and modulus (m) were determined from the constant elongation rate to failure.
Grahic Jump Location
Maximum stress in ramp to failure tests, mean+st. dev., *p<0.02
Grahic Jump Location
Modulus in ramp to failure tests, mean+st. dev., *p<0.004
Grahic Jump Location
Percent relaxation in stress relaxation tests, mean+st. dev., *p=0.006



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In