Silver, F. H., 1987, *Biological Materials: Structure, Mechanical Properties, and Modeling of Soft Tissues*, New York University Press, New York.

Tuderman,
L., and Bruckner,
P., 1998, “Genetic Diseases of the Extracellular Matrix: More Than Just Connective Tissue Disorders,” J. Mol. Med., 76, pp. 226–237.

Bell,
E., Ivarsson,
B., and Merrill,
C., 1979, “Production of a Tissue-Like Structure by Contraction of Collagen Lattices by Human Fibroblasts of Different Proliferative Potential in Vivo,” Proc. Natl. Acad. Sci. U.S.A., 76, pp. 1274–1278.

Lopez Valle,
C. A., Auger,
F. A., Rompre,
P., Bouvard,
V., and Germain,
L., 1992, “Peripheral Anchorage of Dermal Equivalents,” Br. J. Dermatol., 127, pp. 365–371.

Parenteau,
N., Sabolinski,
M., Nolte,
C., Oleson,
M., Kriwet,
K., and Bilbo,
P., 1996, “Biological and Physical Factors Influencing the Successful Engraftment of a Cultured Human Skin Substitute,” Biotechnol. Bioeng., 52, pp. 3–14.

Tranquillo,
R. T., Girton,
T. S., Bromberek,
B. A., Triebes,
T. G., and Mooradian,
D. L., 1996, “Magnetically-Oriented Tissue-Equivalent Tubes: Application to a Circumferentially-Oriented Media-Equivalent,” Biomaterials, 17, p. 349.

Fung, Y. C., 1993, *Biomechanics: Mechanical Properties of Living Tissues*, Springer-Verlag. New York.

Lanir,
Y., 1982, “Constitutive Equations for Fibrous Connective Tissues,” J. Biomech., 18, pp. 1–12.

Shoemaker,
P. A., Schneider,
D., Lee,
M. C., and Fung,
Y., 1986, “A Constitutive Model for Two-Dimensional Soft Tissues and Its Application to Experimental Data,” J. Biomech., 19, pp. 695–702.

Lai,
W. M., Hou,
J. S., and Mow,
V. C., 1991, “A Triphasic Theory for the Swelling and Deformation Behaviors of Articular Cartilage,” ASME J. Biomech. Eng., 113, pp. 245–258.

Simon,
B. R., Liable,
J. P., Pflaster,
D., Yuan,
Y., and Krag,
M. H., 1996, “A Poroelastic Finite Element Formulation Including Transport and Swelling in Soft Tissue Structures,” ASME J. Biomech. Eng., 118, pp. 1–9.

Farquhar,
T., Dawson,
P. R., and Torzilli,
P. A., 1990, “A Microstructural Model for the Anisotropic Drained Stiffness of Articular Cartilage,” ASME J. Biomech. Eng., 112, pp. 414–425.

Soulhat,
J., Buschmann,
M. D., and Shirazi-Adl,
A., 1999, “A Fibril-Network-Reinforced Biphasic Model of Cartilage in Unconfined Compression,” ASME J. Biomech. Eng., 121, pp. 340–347.

Schwartz,
M. H., Leo,
P. H., and Lewis,
J. L., 1994, “A Microstructural Model for the Elastic Response of Articular Cartilage,” J. Biomech., 27, pp. 865–873.

Hollister,
S. J., Fyrhie,
D. P., Jepsen,
K. J., and Goldstein,
S. A., 1991, “Application of Homogenization Theory to the Study of Trabecular Bone Mechanics,” J. Biomech., 24, pp. 825–839.

Hollister,
S. J., Brennan,
J. M., and Kikuchi,
N., 1994, “A Homogenization Sampling Procedure for Calculating Trabecular Bone Effective Stiffness and Tissue Level Stress,” J. Biomech., 27, pp. 433–444.

Barocas,
V. H., and Tranquillo,
R. T., 1997, “An Anisotropic Biphasic Theory of Tissue-Equivalent Mechanics: The Interplay Among Cell Traction, Fibrillar Network Deformation, Fibril Alignment, and Cell Contact Guidance,” ASME J. Biomech. Eng., 119, pp. 137–145.

Sherratt,
J. A., and Lewis,
J., 1993, “Stress-Induced Alignment of Actin Filaments and the Mechanics of Cytogel,” Bull. Math. Biol., 55, pp. 637–654.

Dembo,
M., and Harlow,
F., 1986, “Cell Motion, Contractile Networks, and the Physics of Interpenetrating Reactive Flow,” Biophys. J., 50, pp. 109–121.

Stamenovic,
D., Fredberg,
J. J., Wang,
N., Butler,
J. P., and Ingber,
D. E., 1996, “A Microstructural Approach to Cytoskeletal Mechanics Based on Tensegrity,” J. Theor. Biol., 181, pp. 125–136.

Strang, W. G., and Fix, J. G., 1973, *An Analysis of the Finite Element Method*, Prentice-Hall, Englewood Cliffs, NJ.

Gill,
P. E., Jay,
L. O., Leonard,
M. W., Petzold,
L. R., and Sharma,
V., 2000, “An SQP Method for the Optimal Control of Large-Scale Dynamical Systems,” J. Comput. Appl. Math., 120, pp. 197–213.

Gill, P., Murray, W., and Saunders, M. A., 1998, “SNOPT: a FORTRAN Package for Large-Scale Nonlinear Programming.”

Draper, N. R., and Smith, H., 1966, *Applied Regression Analysis*, Wiley, New York.

Guido,
S., and Tranquillo,
R. T., 1993, “A Methodology for the Systematic and Quantitative Study of Cell Contact Guidance in Oriented Gels: Correlation of Fibroblast Orientation and Gel Birefringence,” J. Cell. Sci., 105, pp. 317–331.

Klebe,
R. J., Caldwell,
H., and Milam,
S., 1990, “Cells Transmit Spatial Information by Orienting Collagen-Fibers,” Matrix, 9, pp. 451–458.

Bergren, T. E., 1993, “Controlling the Material Properties of in Vitro Collagen Through Directed Orientation and Cross-Linking of Fibrils,” Ph.D. Thesis, Department of Aerospace Engineering, University of Colorado, Boulder, CO.

Hibbeler, R. C., 1994, *Mechanics of Materials*, MacMillan College Publishing Company.

Mow,
V. C., Kuei,
S. C., Lai,
W. M., and Armstrong,
C. G., 1980, “Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments,” ASME J. Biomech. Eng., 102, pp. 73–84.

Knapp,
D. M., Barocas,
V. H., Moon,
A. G., Yoo,
K., Petzold,
L. R., and Tranquillo,
R. T., 1997, “Rheology of Reconstituted Type I Collagen Gel in Confined Compression,” J. Rheol., 41, pp. 971–993.

Grinnell,
F., and Lamke,
C. R., 1984, “Reorganization of Hydrated Collagen Lattices by Human Skin Fibroblasts,” J. Cell. Sci., 66, pp. 51–63.