Stability Analysis and Finite Element Simulation of Bone Remodeling Model

[+] Author and Article Information
M. Zidi, S. Ramtani

Université Paris Val de Marne, Faculté des Sciences et Technologie, Laboratoire de Mécanique Physique/ESA CNRS 7052 61, av. du général De Gaulle, 94010 Créteil cédex, France

J Biomech Eng 122(6), 677-680 (Aug 10, 2000) (4 pages) doi:10.1115/1.1318942 History: Received October 06, 1999; Revised August 10, 2000
Copyright © 2000 by ASME
Your Session has timed out. Please sign back in to continue.


Wolff, J. L., 1892, 1986, The Law of Bone Remodeling, Springer, Berlin (translated by Marquet et R. Furlong, 1986).
Cowin,  S. C., 1993, “Bone Stress Adaptation Models,” ASME J. Biomech. Eng., 115, pp. 528–533.
Taber,  L., 1995, “Biomechanics of Growth, Remodeling, and Morphogenesis,” Appl. Mech. Rev., 48, No. 8, pp. 487–545.
Cowin,  S. C., Moss-Salentijn,  L., and Moss,  M. L., 1991, “Candidates for the Mechanosensory System in Bone,” ASME J. Biomech. Eng., 113, pp. 191–197.
Mullender,  M. G., Huiskes,  R., and Weinans,  H., 1994, “A Physiological Approach to the Simulation of Bone Remodeling as Self Organizational Control Process,” J. Biomech., 27, No. 11, pp. 1389–1394.
Cowin,  S. C., and Hegedus,  D. M., 1976, “Bone Remodeling I: A Theory of Adaptive Elasticity,” J. Elast., 6, pp. 313–325.
Carter,  D. R., 1987, “Mechanical Loading Histories and Skeletal Biology,” J. Biomech., 20, pp. 785–794.
Van Rietbergen,  B., Weinans,  H., Huiskes,  R., and Odgaard,  A., 1995, “A New Method to Determine Trabecular Bone Elastic Properties and Loading Using Micromechanical Finite-Element Models,” J. Biomech., 28, No. 1, pp. 69–81.
Jacobs,  C. R., Levenston,  M. E., Beaupré,  G. S., Simo,  J. C., and Carter,  D. R., 1995, “Numerical Instabilities in Bone Remodeling Simulations: The Advantages of a Node-Based Finite Element Approach,” J. Biomech., 28, No. 4, pp. 449–459.
Hart, R. T., 1995 “Review and Overview of Net Bone Remodeling.” Computer Simulations in Biomedicine, H. Power and T. Hart, eds., Computational Mechanics Publications, pp. 267–276.
Fyhrie,  D. P., and Shaffler,  M. B., 1995, “The Adaptation of Bone Apparent Density to Applied Load,” J. Biomech., 28, No. 2, pp. 135–146.
Pettermann,  H. E., Reiter,  T. J., and Rammerstorfer,  F. G., 1997, “Computational Simulation of Internal Bone Remodeling,” Arch. Comput. Methods Eng., 4, No. 4, pp. 295–323.
Weinans,  H., Huiskes,  R., and Grootenboer,  H. J., 1992, “The Behavior of Adaptive Bone Remodeling Simulation Models,” J. Biomech., 25, No. 12, pp. 1425–1441.
Harrigan,  T. P., and Hamilton,  J. J., 1992, “An Analytical and Numerical Study of the Stability of Bone Remodeling Theories: Dependence on Microstructural Stimulus,” J. Biomech., 25, pp. 447–488.
Capello,  A., Viceconti,  M., Nanni,  F., and Catania,  G., 1998, “Global Asymptotic Stability of Bone Remodeling Theories: A New Approach Based on Non-Linear Dynamical Systems Analysis,” J. Biomech., 31, pp. 289–294.
Zidi,  M., and Ramtani,  S., 1999, “Bone Remodeling Theory Applied to the Study of n Unit Elements Model,” J. Biomech., 32, No. 7, pp. 743–747.
Zidi,  M., 1998, “Contribution to Modelization of the Trabecular Bone Remodeling,” C. R. Acad. Sci. Paris/T, 326, Série II B, pp. 121–128.
Harrigan,  T. P., and Hamilton,  J. J., 1993, “Finite Element Simulation of Adaptive Bone Remodeling: A Stability Criterion and a Time Stepping Method,” Int. J. Numer. Methods Eng., 36, pp. 8376–854.
Currey,  J. D., 1988, “The Effect of Porosity and Mineral Content on the Young’s Modulus Elasticity of Compact Bone,” J. Biomech., 21, pp. 131–139.
Strang, G., 1986, Introduction to Applied Mathematics, Wellesley-Cambridge Press.
Lindler,  J. F., and Ditto,  W. L., 1995, “Removal, Suppression, and Control of Chaos by Nonlinear Design,” Appl. Mech. Rev., 48, No. 12, pp. 795–807.


Grahic Jump Location
Apparent density for ϕ0=0.6 with (α=3, β=1.5) at 200 TU
Grahic Jump Location
Apparent density for ϕ0=0.9 with (α=3, β=0.5) at 200 TU
Grahic Jump Location
Apparent density for ϕ0=0.6 with (α=3, β=0.5) at 200 TU
Grahic Jump Location
Geometry and loading configuration of the model with n unit-element
Grahic Jump Location
Apparent density for ϕ0=0.9 with (α=3, β=1.5) at 200 TU



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In