Extrinsic Cell Infiltration and Revascularization Accelerate Mechanical Deterioration of the Patellar Tendon After Fibroblast Necrosis

[+] Author and Article Information
Harukazu Tohyama, Kazunori Yasuda

Division of Medical Bioengineering and Sports Medicine, Department of Advanced Surgery, Hokkaido University School of Medicine, Kita-15 Nishi-7, Sapporo 060-8638, Japan

J Biomech Eng 122(6), 594-599 (Jul 24, 2000) (6 pages) doi:10.1115/1.1319659 History: Received October 28, 1999; Revised July 24, 2000
Copyright © 2000 by ASME
Your Session has timed out. Please sign back in to continue.


Jones,  K. G., 1963, “Reconstruction of the Anterior Cruciate Ligament,” J. Bone Joint Surg. Am., 45, pp. 925–932.
Ballock,  R. T., Woo,  S. L.-Y., Lyon,  R. M., Hollis,  J. M., and Akeson,  W. H., 1989, “Use of Patellar Tendon Autograft for Anterior Cruciate Ligament Reconstruction in the Rabbit: A Long Term Histological and Biomechanical Study,” J. Orthop. Res., 7, pp. 474–485.
Butler,  D. L., Grood,  E. S., Noyes,  F. R., Olmstead,  M. L., Hohn,  R. B., Arnoczky,  S. P., and Siegel,  M. G., 1989, “Mechanical Properties of Primate Vascularized vs. Nonvascularized Patellar Tendon Grafts; Changes Over Time,” J. Orthop. Res., 7, pp. 68–79.
Clancy,  W. G., Narechania,  R. G., Rosenberg,  T. D., Gmeiner,  J. G., Wisnefske,  D., and Lange,  T. A., 1981, “Anterior and Posterior Cruciate Ligament Reconstruction in Rhesus Monkeys,” J. Bone Joint Surg. Am., 63, pp. 1270–1284.
McFarland,  E. G., Morrey,  B. F., An,  K. N., and Wood,  M. B., 1986, “The Relationship of Vascularity and Water Content to Tensile Strength in a Patellar Tendon Replacement of the Anterior Cruciate in Dogs,” Am J. Sports Medicine, 14, pp. 436–448.
McPherson,  G. K., Mendenhall,  H. V., Gibbons,  D. F., Plenk,  H., Rottmann,  W., Sanford,  J. B., Kennedy,  J. C., and Roth,  J. H., 1985, “Experimental Mechanical and Histologic Evaluation of the Kennedy Ligament Augmentation Device,” Clin. Orthop. Relat. Res., 196, pp. 186–195.
Shino,  K., Kawasaki,  T., Hirose,  H., Gotoh,  I., Inoue,  M., and Ono,  K., 1984, “Replacement of the Anterior Cruciate Ligament by an Allogenic Tendon Graft,” J. Bone Joint Surg. Br., 66, pp. 672–681.
Tohyama,  H., Beynnon,  B. D., Johnson,  R. J., Renstrom,  P. A., and Arms,  S. W., 1996, “The Effect of Anterior Cruciate Ligament Graft Elongation at the Time of Implantation on the Biomechanical Behavior of the Graft and Knee,” Am. J. Sports Medicine, 24, pp. 608–614.
Yoshiya,  S., Andrish,  J. T., Manley,  M. T., and Kurosaka,  M., 1987, “Graft Tension in Anterior Cruciate Ligament Reconstruction, an in Vivo Study in Dogs,” Am. J. Sports Medicine, 15, pp. 464–470.
Amiel,  D., Kleiner,  J. B., Roux,  R. D., Harwood,  F. L., and Akeson,  W. H., 1984, “The Phenomenon of ‘Ligamentization’: Anterior Cruciate Ligament Reconstruction With Autogenous Patellar Tendon,” J. Orthop. Res., 4, pp. 162–172.
Arnoczky,  S. P., Tarvin,  G. B., and Marshall,  J. L., 1982, “ACL Replacement Using Patellar Tendons,” J. Bone Joint Surg. Am., 64, pp. 217–224.
Jackson,  D. W., Grood,  E. S., Cohn,  B. T., Arnoczky,  S. P., Simon,  T. M., and Cummings,  J., 1991, “The Effects of in situ Freezing on the Anterior Cruciate Ligament. An Experimental Study in Goats,” J. Bone Joint Surg. Am., 73, pp. 201–213.
Majima,  T., Yasuda,  K., Yamamoto,  N., Kaneda,  K., and Hayashi,  K., 1994, “Deterioration of Mechanical Properties in Controlled Stress-Shielded Augmentation Procedure. An Experimental Study With Rabbit Patellar Tendon,” Am. J. Sports Medicine, 22, pp. 821–829.
Ohno,  K., Yasuda,  K., Yamamoto,  N., Kaneda,  K., and Hayashi,  K., 1993, “Effects of Complete Stress-Shielding on the Mechanical Properties and Histology of in Situ Frozen Patellar Tendon,” J. Orthop. Res., 11, pp. 592–602.
Tohyama,  H., Ohno,  K., Yamamoto,  N., Yasuda,  K., Kaneda,  K., and Hayashi,  K., 1992, “Stress–Strain Characteristics of in situ Frozen and Stress-Shielded Rabbit Patellar Tendon,” Clinical Biomechanics, 7, pp. 226–230.
Ohno,  K., Yasuda,  K., Yamamoto,  N., Kaneda,  K, and Hayashi,  K., 1996, “Biomechanical and Histological Changes in the Patellar Tendon After in Situ Freezing. an Experimental Study in Rabbits,” Clinical Biomechanics, 11, pp. 207–213.
Kleiner,  J. B., Amiel,  D., Roux,  R. D., and Akeson,  W. H., 1986, “Origin of Replacement Cells for the Anterior Cruciate Ligament Autograft,” J. Orthop. Res., 4, pp. 466–474.
Yasuda, K., and Hayashi, K., 1996, “Remodeling of Tendon Autograft in Ligament Reconstruction,” Biomechanics. Functional Adaptation and Remodeling, K. Hayashi et al., eds., Springer-Verlag, Tokyo, pp. 213–250.
Yamamoto,  N., and Hayashi,  K., 1995, “Effects of Stress Shielding on the Mechanical Properties of Rabbit Patellar Tendon: Effects of Inhibiting the Invasion of Fibroblasts,” J. Japanese Society Clinical Biomech., 16, pp. 119–122 [in Japanese].
Harper, H. A., Rodwell, V. W., and Mayes, P. A., 1977, Physiological Chemistry, Lange Medical Publication, 16th ed., Los Alton, CA.
Woo,  S. L.-Y., Orlando,  C. A., Camp,  J. F., and Akeson,  W. H., 1986, “Effects of Postmortem Storage by Freezing on Ligament Tensile Behavior,” J. Biomech., 19, pp. 399–404.
Butler,  D. L., Grood,  E. S., Noyes,  F. R., Zernicke,  R. F., and Brackett,  K., 1984, “Effects of Structure and Strain Measurement Technique on the Material Properties of Young Human Tendons and Fascia,” J. Biomech., 17, pp. 579–596.
Yamamoto,  N., Hayashi,  K., Kuriyama,  H., Ohno,  K., Yasuda,  K., and Kaneda,  K., 1992, “Mechanical Properties of the Rabbit Patellar Tendon,” ASME J. Biomech. Eng., 114, pp. 332–337.
Woo,  S. L.-Y., Gomez,  M. A., Seguchi,  Y., Endo,  C., and Akeson,  W. H., 1983, “Measurement of Mechanical Properties of Ligament Substance From a Bone-Ligament-Bone Preparation,” J. Orthop. Res., 1, pp. 22–29.
Bundy,  K., O’Connor,  K. C., Roberts,  O. C., Rahn,  B., Clark,  R., and Hallab,  N., 1994, “Physical and Biological Effects Influencing Fibroblast Adhesion to Biomaterials,” Trans. Annu. Meet. — Orthop. Res. Soc., 19, p. 93.
Tsuchida,  T., Yasuda,  K., Hayashi,  K., Majima,  K., Yamamoto,  N., Kaneda,  K., Miyakawa,  K., and Tanaka,  K., 1997, “Effects of in situ Freezing and Stress Shielding on the Ultrastructure of Rabbit Patellar Tendons,” J. Orthop. Res., 15, pp. 904–910.
Hannafin,  J. A., Arnoczky,  S. P., Hoonjan,  A., and Torzilli,  P. A., 1995, “Effects of Stress Deprivation and Cyclic Tensile Loading on the Material and Morphologic Properties of Canine Flexor Digitorum Profundus Tendon; an in Vitro Study,” J. Orthop. Res., 13, pp. 907–914.
Tohyama,  H., and Yasuda,  K., 2000, “The Effects of Stress Enhancement on the Extracellular Matrix and Fibroblasts in the Patellar Tendon,” J. Biomech., 33, pp. 559–565.
Regan,  M. C., Kirk,  S. J., Wasserkrug,  H. L., and Barbul,  A., 1991, “The Wound Environment as a Regular of Fibroblast Phenotype,” J. Surg. Res., 50, pp. 442–448.
Kleiner,  J. B., Amiel,  D., Harwood,  F. L., and Akeson,  W. H., 1989, “Early Histologic, Metabolic and Vascular Assessment of Anterior Cruciate Ligament Autografts,” J. Orthop. Res., 7, pp. 235–242.
Roth,  J. H., and Kennedy,  J. C., 1980, “Intra-Articular Reconstruction of the Anterior Cruciate Ligament in Rabbits,” Trans. Annu. Meet. — Orthop. Res. Soc., 5, p. 109.


Grahic Jump Location
Illustration showing the wrapping technique for the patellar tendon. Two nylon membrane filters were inserted between the patellar tendon and fat pad. The patellar tendon was then doubly wrapped in these filters. The inner filter was tightly sutured beside the medial edge of the patellar tendon using 3-0 monofilament nylon threads (A). The outer filter was sutured at the lateral edge of the patellar tendon. These filters covered not only the patellar tendon but also the distal third of the patella and a part of the tibial tuberosity (B).
Grahic Jump Location
Histological representation of longitudinal sections of the patellar tendon with the top of each photograph corresponding to the anterior side of the tendon. Stained with hematoxylin and eosin. (A) There was uniform cellularity. Nuclei of most cells were spindle-shaped in the normal control tendon (bar=200 μm). (B) No cells are seen in the midsubstance of the tendon in Group I at 6 weeks (bar=200 μm). (C) Some vessels were observed at the peripheral portions of the tendon of Group II at 3 weeks (bar=400 μm). (D) Many cells with an ovoid nucleus were dispersed in the patellar tendon matrix of Group II at 6 weeks (bar=200 μm). (E) Several vascular sections were observed at the midsubstance in Group II at 6 weeks (bar=400 μm). (F) There is uniform cellularity in the tendon in Group III at 6 weeks and the nuclei of most cells are spindle-shaped (bar=200 μm).



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In