Estimates of the Peak Pressures in Bone Pore Water

[+] Author and Article Information
D. Zhang, S. Weinbaum, S. C. Cowin

Center for Biomedical Engineering, CUNY Graduate School, and Department of Mechanical Engineering, The City College of New York, 140th St. and Convent Ave., New York, NY 10031

J Biomech Eng 120(6), 697-703 (Dec 01, 1998) (7 pages) doi:10.1115/1.2834881 History: Received February 12, 1998; Revised July 22, 1998; Online January 23, 2008


The maximum pore fluid pressures due to uniaxial compression are determined for both the vascular porosity (Haversian and Volkmann’s canals) and the lacunar–canalicular porosity of live cortical bone. It is estimated that the peak pore water pressure will be 19 percent of the applied axial stress in the vascular porosity and 12 percent of the applied axial stress in the lacunar–canalicular porosity for an impulsive step loading. However, the estimated relaxation time for the vascular porosity (1.36 μs) is three orders of magnitude faster than that estimated for the lacunar–canalicular porosity (4.9 ms). Thus, under physiological loading, which has a stress rise time generally larger than 1 ms, pressures higher than the vascular pressure cannot be sustained in the vascular porosity due to the swift pressure relaxation in this porosity (unless the fluid drainage through the boundary is obstructed). The model also predicts a slight hydraulic stiffening of the bulk modulus due to longer draining time of the lacunar–canalicular porosity. The undrained bulk modulus is 6 percent higher than the drained bulk modulus in this case.

Copyright © 1998 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In