Inertial Loading of the Human Cervical Spine

[+] Author and Article Information
N. Yoganandan, F. A. Pintar

Department of Neurosurgery, Medical College of Wisconsin; and Department of Veterans Affairs Medical Center, Milwaukee, WI 53226

J Biomech Eng 119(3), 237-240 (Aug 01, 1997) (4 pages) doi:10.1115/1.2796086 History: Received November 28, 1995; Revised June 30, 1996; Online October 30, 2007


While the majority of experimental cervical spine biomechanics research has been conducted using slowly applied forces and/or moments, or dynamically applied forces with contact, little research has been performed to delineate the biomechanics of the human neck under inertial “noncontact” type forces. This study was designed to develop a comprehensive methodology to induce these loads. A minisled pendulum experimental setup was designed to test specimens (such as human cadaver neck) at subfailure or failure levels under different loading modalities including flexion, extension, and lateral bending. The system allows acceleration/deceleration input with varying wave form shapes. The test setup dynamically records the input and output strength information such as forces, accelerations, moments, and angular velocities; it also has the flexibility to obtain the temporal overall and local kinematic data of the cervical spine components at every vertebral level. These data will permit a complete biomechanical structural analysis. In this paper, the feasibility of the methodology is demonstrated by subjecting a human cadaver head-neck complex with intact musculature and skin under inertial flexion and extension whiplash loading at two velocities.

Copyright © 1997 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In