Variations in Rupture Site and Surface Strains at Failure in the Maturing Rabbit Medial Collateral Ligament

[+] Author and Article Information
T. C. Lam, N. G. Shrive

Department of Civil Engineering, McCaig Centre for Joint Injury and Arthritis Research, The University of Calgary, Calgary, Alberta, Canada

C. B. Frank

Department of Surgery, McCaig Centre for Joint Injury and Arthritis Research, The University of Calgary, Calgary, Alberta, Canada

J Biomech Eng 117(4), 455-461 (Nov 01, 1995) (7 pages) doi:10.1115/1.2794207 History: Received January 25, 1994; Revised November 08, 1994; Online October 30, 2007


The relationship between the pattern of surface strain and the site of failure in maturing rabbit ligaments was studied in vitro. Bone-medial collateral ligament (MCL)-bone complexes of 24 female New Zealand White rabbits at 3, 6, 9 and 12 months of age (n = 6 rabbits, 12 MCLs per group) were tested in tension to failure. A video dimension analysis (VDA) system was used to map the surface strain at failure across the width and along the length of the medial side of each MCL during testing. Results showed that the highest strains were consistently located at the femoral insertion decreasing towards the midsubstance, with the highest strain occurring in the anterior portion of the MCL immediately adjacent to the femoral insertion. Strains of the complex at failure increased with rabbit maturation. The strain distribution however, did not change dramatically, even though the locations of MCL failure changed from exclusively tibial avulsion in the three month old rabbits to predominantly midsubstance failures in the 12 month old rabbits. In the six month old rabbits, there was a particular dissociation with all MCLs failing near the tibial insertion while femoral strains were apparently the highest. These results suggest two possibilities beyond that of some unknown artifacts of optical strain measurement. First, since failure sites rarely correlated with areas of maximum surface strain in this study, it seems possible that higher strains could exist deeper in the tissue, particularly at the bone-ligament interface of the tibial insertion in immature animals and somewhere within the midsubstance of the MCL in the adult. Secondly, it is possible that the ligament material may be heterogeneous.

Copyright © 1995 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In