An Analysis of the Time-Dependent Changes in Intracellular Calcium Concentration in Endothelial Cells in Culture Induced by Mechanical Stimulation

[+] Author and Article Information
F. K. Winston, L. E. Thibault

Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104

E. J. Macarak

Connective Tissue Research Insititute, University of Pennsylvania, Philadelphia, PA 19104

J Biomech Eng 115(2), 160-168 (May 01, 1993) (9 pages) doi:10.1115/1.2894116 History: Received July 24, 1991; Revised July 30, 1992; Online March 17, 2008


When bovine pulmonary artery endothelial cells in culture are subjected to mechanical strain, their physiology is altered. Experimentally, this mechanical strain is generated by increased tension in the substrate to which the cells are attached and results in altered levels of fibronectin. Studies of the structural response of the endothelial cell suggest that this stimulus is transmitted to the cell membrane, organelles, and cytoskeleton by natural cell attachments in a quantifiable and predictable manner. This report examines altered intracellular calcium homeostasis as a possible messenger for the observed strain-induced physiologic response. In particular, using the intracellularly trapped calcium indicator dyes, Quin2 and Fura2, we observed changes in cytosolic free calcium ion concentration in response to biaxial strain of bovine pulmonary artery endothelial cells in culture. The magnitude and time course of this calcium transient resemble that produced by treatment with the calcium ionophore, Ionomycin, indicating that mechanical stimulation may alter cell membrane permeability to calcium. Additional experiments in the presence of EDTA indicated that calcium was also released from intracellular stores in response to strain. In order to explain the stretch-induced calcium transients, a first-order species conservation model is presented that takes into account both the cell’s structural response and the calcium homeostatic mechanisms of the cell. It is hypothesized that the cell’s calcium sequestering and pumping capabilities balanced with its mechanically induced changes in calcium ion permeability will determine the level and time course of calcium accumulation in the cytosol.

Copyright © 1993 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In