Turbulence Characteristics Downstream of Bileaflet Aortic Valve Prostheses

[+] Author and Article Information
J. S. Liu, P. C. Lu

Department of Water Resources and Environmental Engineering, Tamkang University, Taipei, 251 Taiwan

S. H. Chu

Department of Surgery, College of Medicine, National Taiwan University, Taipei, 106 Taiwane-mail: shchu@ha.mc.ntu.edu.tw

J Biomech Eng 122(2), 118-124 (Aug 22, 1999) (7 pages) doi:10.1115/1.429643 History: Received March 24, 1998; Revised August 22, 1999
Copyright © 2000 by ASME
Your Session has timed out. Please sign back in to continue.


Drury,  P. J., Black,  M. M., Ashman,  C. J., and Piercey,  J., 1992, “Valve Data Collection: Problems and Pitfalls,” J. Med. Eng. Technol., 16, pp. 4–9.
Fernandez,  J., Laub,  G. W., Adkins,  M. S., Anderson,  W. A., Chen,  C., Bailey,  B. M., Nealon,  L. M., and McGrath,  L. B., 1994, “Early and Late Phase Events After Valve Replacement With the St. Jude Medical Prosthesis in 1200 Patients,” J. Thorac. Cardiovasc. Surg., 107, pp. 394–407.
de Luca,  L., Vitale,  N., Giannolo,  B., Cafarella,  G., Piazza,  L., and Cotrufo,  M., 1993, “Mid-term Follow-up After Heart Valve Replacement With CarboMedics Bileaflet Prosthesis,” J. Thorac. Cardiovasc. Surg., 106, pp. 1158–1165.
Smith,  R., Blick,  E., Coalson,  J., and Stein,  P., 1972, “Thrombus Production by Turbulence,” J. Appl. Physiol., 32, pp. 261–264.
Stein,  P. D., and Sabbah,  M. N., 1974, “Measured Turbulence and Its Effect on Thrombus Formation,” Circ. Res., 35, pp. 608–614.
Hellums, J. D., and Brown, C. H., 1977, “Blood Cell Damage by Mechanical Forces,” in: Cardiovascular Flow Dynamics and Measurements, N. H. C. Hwang and N. A. Normann, eds., University Park Press, Baltimore, MD, pp. 799–823.
Sutera,  S. P., and Mehrjardi,  M. N., 1975, “Deformation and Fragmentation of Human RBC in Turbulence Shear Flow,” Biophys. J., 15, pp. 1–10.
Rooney,  J. A., 1970, “Hemolysis Near an Ultrasonically Pulsing Gas Bubble,” Science, 196, pp. 869–871.
Sallam,  A. H., and Hwang,  N. H. C., 1984, “Human Red Blood Cell Hemolysis in Turbulent Shear Flow: Contributions of Reynolds Shear Stresses,” Biorheology, 21, pp. 783–797.
Williams,  A. R., Hughes,  D. E., and Nyborg,  W. L., 1970, “Hemolysis Near a Transversely Oscillating Wire,” Science, 96, pp. 871–873.
Hung,  T. C., Hochmuth,  R. M., Joist,  J. H., and Sutera,  S. P., 1976, “Shear-Induced Aggregations and Lysis of Platelets,” Trans. ASAIO, 22, pp. 285–290.
Williams,  A. R., 1974, “Release of Serotonin From Human Platelets by Acoustic Microstreaming,” J. Acoust. Soc. Am., 56, pp. 1640–1643.
Ramstack,  J. M., Zuckerman,  L., and Mockros,  L. F., 1979, “Shear Induced Activaton of Platelets,” J. Biomech., 12, pp. 113–125.
Papoutsakis,  E. T., 1991, “Fluid Mechanical Damage of Animal Cells in Bioreactors,” Trends Biotechnol., 9, pp. 427–437.
Kawase,  Y., and Moo-Young,  M., 1990, “Mathematical Models for Design of Bioreactors: Applications of Kolmogoroff’s Theory of Isotropic Turbulence,” Chem. Eng. J., 43, pp. B19–B41.
Liu,  J. S., Lu,  P. C., and Chu,  S. H., 1996, “Pulsatile Flow Past Bileaflet Aortic Valve Prostheses,” J. Chin. Inst. Eng., 19, pp. 333–344.
Reul,  H., van Son Jacques,  A. M., Steinseifer,  U., Schmitz,  B., Schmidt,  A., Schmitz,  C., and Rau,  G., 1993, “In Vitro Comparison of Bileaflet Aortic Heart Valve Prostheses—St. Jude Medical, CarboMedics, Modified Edwards-Durmedics and Sorin-Bicarbon Valves,” J. Thorac. Cardiovasc. Surg., 106, pp. 412–420.
Yoganathan,  A. P., Woo,  Y. R., and Sung,  H. W., 1986, “Turbulent Shear Stress Measurements in the Vicinity of Aortic Heart Valve Prostheses,” J. Biomech., 19, pp. 433–442.
Yoganathan,  A. P., Sung,  H. W., Woo,  Y. R., and Jones,  M., 1988, “In Vitro Velocity and Turbulence Measurments in the Vicinity of Three New Mechanical Aortic Heart Valve Prostheses: Bjork-Shiley Monostrut, OmniCarbon and Duromedics,” J. Thorac. Cardiovasc. Surg., 95, pp. 929–939.
Lamson, T. C., 1993, “Relative Blood Damage in the Three Phases of a Prosthetic Heart Valve Flow Cycle,” Ph.D. Thesis, The Pennsylvania State University.
Baldwin,  J. T., Deutsch,  S., Geselowitz,  D. B., and Tarbell,  J. M., 1994, “LDA Measurements of Mean Velocity and Reynolds Stress Fields Within an Artificial Heart Ventricle,” ASME J. Biomech. Eng., 116, pp. 190–200.
Ellis,  J. T., Healy,  T. M., Fontaine,  A. A., Saxena,  R., and Yoganathan,  A. P., 1996, “Velocity Measurements and Flow Patterns Within the Hinge Region of a Metronic Parallel Bileaflet Mechanical Valve With Clear Housing,” J. Heart Valve Disease, 5, pp. 591–599.
Hinze, J. O., 1975, Turbulence, 2nd ed., McGraw-Hill, New York.
Nichols, W. W., and O’Rourke, M. F., 1990, McDonald’s Blood Flow in Arteries, 3rd ed., Lea & Febiger, Philadelphia, PA.
McLaughlin,  D. K., and Tiederman,  W. G., 1973, “Biasing Correction for Individual Realization of Laser Anemometry Measurements in Turbulent Flows,” Phys. Fluids, 12, pp. 2082–2088.
Tiederman,  W. G., Privette,  R. M., and Phillips,  W. M., 1988, “Cycle to Cycle Variation Effects on Turbulent Shear Stress Measurements in Pulsatile Flows,” Exp. Fluids, 6, pp. 265–272.
Stein,  P. D., Walburn,  F. J., and Sabbah,  H. N., 1982, “Turbulent Stresses in the Region of Aortic and Pulmonary Valves,” ASME J. Biomech. Eng., 104, pp. 238–244.
Liou,  T. M., and Santavicca,  D. A., 1985, “Cycle Resolved LDV Measurements in a Motored IC Engine,” ASME J. Fluids Eng., 107, pp. 232–240.
Catania,  A. E., and Mittica,  A., 1987, “Induction System Effects on Small Scale Turbulence in a High Speed Diesel Engine,” ASME J. Eng. Gas Turbines Power, 109, pp. 491–502.
Catania,  A. E., Dongiovanni,  C., and Mittica,  A., 1992, “Further Investigation Into the Statistical Properties of Reciprocating Engine Turbulence,” JSME Int. J., Ser. II, 35, pp. 255–265.
Bendat, J. S., and Piersol, A. G., 1986, Random Data Analysis and Measurement Procedures, 2nd ed., Wiley, New York.
Wakisaka,  T., Hamamoto,  Y., and Kinoshita,  S., 1983, “Turbulence Characteristics in Internal Combustion Engines,” Bull. JSME, 26, pp. 254–261.
Tennekes, H., and Lumley, J. L., 1972, A First Course in Turbulence, MIT Press, Cambridge, MA.
Baldwin,  J. T., Deutsch,  S., Petrie,  H. L., and Tarbell,  J. M., 1993, “Determination of Principal Reynolds Stresses in Pulsatile Flows After Elliptical Filtering of Discrete Velocity Measurements,” ASME J. Biomech. Eng., 115, pp. 396–403.


Grahic Jump Location
Variations of (a) the integral length scales, (b) the Taylor micro-length scales, and (c) the smallest length scales at section X=7.8 mm
Grahic Jump Location
Variations of (a) the integral time scales and (b) the Taylor micro-time scales at section X=7.8 mm
Grahic Jump Location
(a) Autocorrelation coefficients and (b) normalized energy spectra at X=7.8 mm,Y=0 mm during acceleration phase (S2), peak phase (S5), and deceleration phase (S8)
Grahic Jump Location
Profiles of velocity vectors and Reynolds stresses at sections X1=7.8 mm and X2=13.8 mm, during peak systole (S5): (a) SJM; (b) CM; (c) DM
Grahic Jump Location
Radial profiles of axial phase average velocity of the SJM value at X=7.8 mm,Y=0 mm
Grahic Jump Location
Aortic pressure and left ventricular pressure at 70 beats/min
Grahic Jump Location
(a) Schematic diagram of the hydraulic pulsatile flow model simulating the left heart and the system circulatory mock loop; (b) open configuration of a bileaflet valve in laboratory coordinate system, X1=7.8 mm,X2=13.8 mm



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In