Three-Dimensional Computational Model of Left Heart Diastolic Function With Fluid–Structure Interaction

[+] Author and Article Information
Jack D. Lemmon, Ajit P. Yoganathan

Schools of Mechanical and Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332

J Biomech Eng 122(2), 109-117 (Oct 31, 1999) (9 pages) doi:10.1115/1.429648 History: Received August 03, 1998; Revised October 31, 1999
Copyright © 2000 by ASME
Your Session has timed out. Please sign back in to continue.


Taylor,  T. W., Okino,  H., and Yamaguchi,  T., 1994, “Three-Dimensional Analysis of Left Ventricular Ejection Using Computational Fluid Dynamics,” ASME J. Biomech. Eng., 116, pp. 127–130.
Taylor,  T. W., and Yamaguchi,  T., 1995, “Flow Patterns in Three-Dimensional Left Ventricular Systolic and Diastolic Flows Determined From Computational Fluid Dynamics,” Biorheology, 32, pp. 61–71.
Schoephoerster,  R. T., Silva,  C. L., and Ray,  G., 1994, “Evaluation of Left Ventricular Function Based on Simulated Systolic Flow Dynamics Computed From Regional Wall Motion,” J. Biomech., 27, pp. 125–136.
Peskin,  C. S., 1977, “Numerical Analysis of Blood Flow in the Heart,” J. Comput. Phys., 25, pp. 220–252.
Peskin,  C. S., David,  M., and McQueen,  D. M., 1989, “A Three-Dimensional Computational Method for Blood Flow in the Heart: I. Immersed Elastic Fibers in a Viscous Incompressible Fluid,” J. Comput. Phys., 81, pp. 372–405.
Peskin,  C. S., David,  M., and McQueen,  D. M., 1989, “A Three-Dimensional Computational Method for Blood Flow in the Heart: II. Contractile Fibers,” J. Comput. Phys., 82, pp. 289–298.
Peskin,  C. S., David,  M., and McQueen,  D. M., 1995, “A General Method for the Computer Simulation of Biological Systems Interacting With Fluid,” Exp. Biol., 61, pp. 265–276.
Peskin, C. S., and McQueen D. M., 1996, “Fluid Dynamics of the Heart and Its Valves,” Case Studies in Mathematical Modeling: Ecology, Physiology, and Cell Biology, Othmer, Adler, et al., eds., Prentice-Hall Inc., New Jersey, pp. 309–337.
McQueen,  D. M., and Peskin,  C. S., 1997, “Shared-Memory Parallel Vector Implementation of the Immersed Boundary Method For the Computation of Blood Flow in the Beating Mammalian Heart,” J. Supercomputing, 11, No. 3, pp. 213–236.
Patankar, S. V., 1983, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, McGraw-Hill, New York.
Appleton,  C. P., and Hatle,  L. K., 1992, “The Natural History of Left Ventricular Filling Abnormalities: Assessment by Two-Dimensional and Doppler Echocardiography,” Echocardiogr., 9, pp. 437–457.
Stugaard,  M. D., Smiseth,  O. A., Riso̸e,  C., and Ihlen,  H., 1995, “Intraventricular Early Diastolic Velocity Profile During Acute Myocardial Ischemia: A Color M-Mode Doppler Echocardiographic Study,” J. Am. Soc. Echocardiogr., 8, pp. 270–279.
Taylor,  R., Waggoner,  A., 1992, “Doppler Assessment of Left Ventricular Diastolic Function: A Review,” J. Am. Soc. Echocardiogr., 5, pp. 603–612.
Yoganathan,  A. P., Lemmon,  J. D., Kim,  Y. H., Walker,  P. G., Levine,  R. A., and Vesier,  C. C., 1994, “A Computational Study of a Thin-Walled Three-Dimensional Left Ventricle During Early Systole,” ASME J. Biomech. Eng., 116, pp. 307–314.
Yoganathan,  A. P., Lemmon,  J. D., Kim,  Y. H., Levine,  R. A., and Vesier,  C. C., 1995, “A Three-Dimensional Computational Investigation of Intraventricular Fluid Dynamics: Examination Into the Initiation of Systolic Anterior Motion of the Mitral Valve Leaflets,” ASME J. Biomech. Eng., 117, pp. 94–102.
Chorin,  A. J., 1968, “Numerical Solution of the Navier–Stokes Equations,” Math. Comput., 22, pp. 745–762.
Patankar,  S. V., and Spalding,  D. B., 1972, “A Calculation Procedure for Heat, Mass, and Momentum Transfer in Three-Dimensional Parabolic Flows,” Int. J. Heat Mass Transf., 15, pp. 1787–1795.
Hutchins,  G. M., Bulkley,  B. H., Moore,  G. W., Piasio,  M. A., and Lohr,  F. T., 1978, “Shape of the Human Cardiac Ventricles,” Am. J. Cardiol., 41, pp. 646–654.
Kunzelman,  K. S., Cochran,  R. P., Verrier,  E. D., and Eberhart,  R. C., 1994, “Anatomic Basis for Valve Modeling,” J. Heart Valve Dis., 3, pp. 491–496.
Ranganathan,  N., Lam,  J. H. C., Wigle,  E. D., and Silver,  M. D., 1970, “Morphology of the Human Mitral Valve. II: The Valve Leaflets,” Circulation, 41, pp. 459–467.
Bellhouse, B. J., 1972, “The Fluid Mechanics of Heart Valves,” Cardiovascular Fluid Dynamics, D. H. Bergel, ed., Academic Press, New York, pp. 261–285.
Reul,  H., Talukder,  N., and Mueller,  E. W., 1980, “Fluid Mechanics of the Natural Mitral Valve,” J. Biomech., 14, pp. 361–372.
Oh,  J. K., Appleton,  C. P., Hatle,  L. K., Nishimura,  R. A., Seward,  J. B., and Tajik,  A. J., 1997, “The Noninvasive Assessment of Left Ventricular Diastolic Function With Two-Dimensional and Doppler Echocardiography,” J. Am. Soc. Echocardiogr., 10, pp. 246–270.
Appleton,  C. P., Hatle,  L. K., and Popp,  R. L., 1988, “Relation of Transmitral Flow Patterns to Left Ventricular Diastolic Function: New Insights From a Combined Hemodynamic and Doppler Echocardiographic Study,” J. Am. Coll. Cardiol., 12, pp. 426–440.
Walker,  P. G., Cranney,  G. B., Grimes,  R. Y., Delatore,  J., Rectenwald,  J., Pohost,  G. M., and Yoganathan,  A. P., 1996, “Three-Dimensional Reconstruction of the Flow in a Human Left Heart by Using Magnetic Resonance Phase Velocity Encoding,” Ann. Biomed. Eng., 24, pp. 139–147.
Bot,  H., Verburg,  J., Delemare,  B. J., and Strackee,  J., 1990, “Determinants of the Occurrence of Vortex Rings in the Left Ventricle During Diastole,” J. Biomech., 23, pp. 607–615.
Kim,  W. Y., Bisgaard,  T., Nielsen,  S. L., Poulsen,  J. K., Pedersen,  E. M., Hasenkam,  M., and Yoganathan,  A. P., 1994, “Two-Dimensional Mitral Flow Velocity Profiles in Pig Models Using Epicardial Doppler Echocardiography,” J. Am. Coll. Cardiol., 24, pp. 532–545.
Jones,  C. J., Song,  G. J., and Gibson,  D. G., 1991, “An Echocardiographic Assessment of Atrial Mechanical Behavior,” Br. Heart J., 65, pp. 31–36.
Gutman,  J., Wang,  Y. S., Wahr,  D., and Schiller,  N. B., 1983, “Normal Left Atrial Function Determined by Two-Dimensional Echocardiography,” Am. J. Cardiol., 51, pp. 336–340.
Courtois,  M., Kovacs,  S. J., and Ludbrook,  P. A., 1988, “Transmitral Pressure–Flow Velocity Relation: Importance of Regional Pressure Gradients in the Left Ventricle During Diastole,” Circulation, 78, pp. 661–671.


Grahic Jump Location
Schematic of: (a) left heart model showing chamber fiber architecture and pulmonary inflow to the atrium, and (b) left atrial geometry
Grahic Jump Location
(a) Schematic for modeling of pulmonary venous flow into the atrium, and (b) the input function for pressure at the boundary
Grahic Jump Location
Input functions for: (a) fiber resting length, and (b) fiber stiffness versus time for left heart normal case
Grahic Jump Location
Transmitral velocity profile for normal diastolic function case
Grahic Jump Location
Pressure traces in the ventricle and atrium for the normal diastolic
Grahic Jump Location
Inflow velocity as a function of space and time for normal case
Grahic Jump Location
Velocity fields for the left heart model at: (a) 40 ms, (b) 60 ms, (c) 100 ms, (d) 180 ms, (e) 280 ms, and (f ) 320 ms. Color-coded scalar field is either the pressure or w velocity (main inflow velocity) component.
Grahic Jump Location
Pulmonary venous flow into the atrium during: (a) early filling (100 ms), and (b) atrial contraction (340 ms)



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In