A Quantitative Model of Cellular Elasticity Based on Tensegrity

[+] Author and Article Information
Dimitrije Stamenović, Mark F. Coughlin

Department of Biomedical Engineering, Boston University, Boston, MA 02215

J Biomech Eng 122(1), 39-43 (Oct 05, 1999) (5 pages) doi:10.1115/1.429631 History: Received July 14, 1998; Revised October 05, 1999
Copyright © 2000 by ASME
Your Session has timed out. Please sign back in to continue.


Ingber,  D. E., 1993, “Cellular Tensegrity: Defining New Rules of Biological Design That Govern the Cytoskeleton,” J. Cell. Sci., 104, pp. 613–627.
Hubmayr,  R. D., Shore,  S. A., Fredberg,  J. J., Planus,  E., Panettieri,  R. A., Moller,  W., Heyder,  J., and Wang,  N., 1996, “Pharmacological Activation Changes Stiffness of Cultured Human Airway Smooth Muscle Cells,” Am. J. Physiol., 271 (also: Cell Physiology, 40 ), pp. C1660-C1668.
Pourati,  J., Maniotis,  A., Spiegel,  D., Schaffer,  J. L., Butler,  J. P., Fredberg,  J. J., Ingber,  D. E., Stamenović,  D., and Wang,  N. 1998, “Is Cytoskeletal Tension a Major Determinant of Cell Deformability in Adherent Endothelial Cells?” Am. J. Physiol., 274 (also: Cell Physiology, 43 ), pp. C1283–1289.
Stamenović,  D., Fredberg,  J. J., Wang,  N., Butler,  J. P., and Ingber,  D. E., 1996, “A Microstructural Approach to Cytoskeletal Mechanics Based on Tensegrity,” J. Theor. Biol., 181, pp. 125–136.
Coughlin,  M. F., and Stamenović,  D., 1997, “A Tensegrity Structure With Buckling Compression Elements: Application to Cell Mechanics,” J. Appl. Mech., 64, pp. 480–486.
Tsuda,  Y., Yasutake,  H., Ishijima,  A., and Yanagida,  T., 1996, “Torsional Rigidity of Single Actin Filaments and Actin-Actin Bond Breaking Force under Torsion Measured Directly by in Vitro Micromanipulation,” Proc. Natl. Acad. Sci. USA, 93, pp. 12937–12942.
Gittes,  F., Mickey,  B., Nettleton,  J., and Howard,  J., 1993, “Flexural Rigidity of Microtubules and Actin Filaments Measured From Thermal Fluctuations in Shape,” J. Cell Biol., 120, pp. 923–934.
Wendling,  S., Oddou,  C., and Isabey,  D., 1999, “Stiffening Response of a Cellular Tensegrity Model,” J. Theor. Biol., 196, pp. 309–325.
Sato,  M., Ohshima,  N., and Nerem,  R. M., 1996, “Viscoelastic Properties of Cultured Porcine Aortic Endothelial Cells Exposed to Shear Stress,” J. Biomech., 29, pp. 461–467.
Petersen,  N. O., McConnaughey,  W. B., and Elson,  E. L., 1982, “Dependence of Locally Measured Cellular Deformability on Position on the Cell, Temperature, and Cytochalasin B,” Proc. Natl. Acad. Sci. USA, 79, pp. 5327–5331.
Wang,  N., and Ingber,  D. E., 1994, “Control of Cytoskeletal Mechanics by Extracellular Matrix, Cell Shape, and Mechanical Tension,” Biophys. J., 66, pp. 2181–2189.
Wang,  N., and Ingber,  D. E., 1995, “Probing Transmembrane Mechanical Coupling and Cytomechanics Using Magnetic Twisting Cytometry,” Biochem. Cell Biol., 73, pp. 327–335.
Potard,  U. S. B., Butler,  J. P., and Wang,  N., 1997, “Cytoskeletal Mechanics in Confluent Epithelial Cells Probed Through Integrins and E-Cadherins,” Am. J. Physiol., 272 (also: Cell Physiology, 41 ), pp. C1654–C1663.
Kojima,  H., Ishijima,  A., and Yanagida,  T., 1994, “Direct Measurement of Stiffness of Single Actin Filaments With and Without Tropomyosin by In Vivo Nanomanipulation,” Proc. Natl. Acad. Sci. USA, 91, pp. 12962–12966.
Satcher,  R., Dewey,  C. F., and Hartwig,  J. H., 1997, “Mechanical Remodeling of the Endothelial Surface and Actin Cytoskeleton Induced by Fluid Flow,” Microcirculation, 4, pp. 439–453.
Discher,  D. E., Mohandas,  N., and Evans,  E. A., 1994, “Molecular Maps of Red Cell Deformation: Hidden Elasticity and in Situ Connectivity,” Science, 266, pp. 1032–1035.
Janmey,  P. A., Euteneuer,  U., Traub,  P., and Schliwa,  M., 1991, “Viscoelastic Properties of Vimentin Compared With Other Filamentous Biopolymer Networks,” J. Cell Biol., 113, pp. 155–160.
Brodland,  G. W., and Gordon,  R., 1990, “Intermediate Filaments May Prevent Buckling of Compressively Loaded Microtubules,” J. Biomech. Eng., 112, pp. 319–321.
Kaech,  S., Ludin,  B., and Matus,  A., 1996, “Cytoskeletal Plasticity in Cells Expressing Neuronal Microtubule-Associated Proteins,” Neuron, 17, pp. 1189–1199.
MacKintosh,  F. C., Käs,  J., and Janmey,  P. A., 1995, “Elasticity of Semiflexible Biopolymer Networks,” Phys. Rev. Lett., 75, pp. 4425–4428.
Satcher,  R. L., and Dewey,  C. F., 1996, “Theoretical Estimates of Mechanical Properties of the Endothelial Cell Cytoskeleton,” Biophys. J., 71, pp. 109–118.
Duszyk,  M., Schwab,  B., Zahalak,  G. I., Qian,  H., and Elson,  E. L., 1989, “Cell Poking: Quantitative Analysis of Indentation of Thick Viscoelastic Layers,” Biophys. J., 55, pp. 683–690.


Grahic Jump Location
Critical buckling force of a microtubule (P0,max) versus length (L0) relationship obtained from Eq. (7) for a bending stiffness Bm=21.5 pN⋅μm2
Grahic Jump Location
Young’s modulus (E0) versus strut length (L0). Lines: predicted upper bound (UB) and lower bound (LB) of E0; dots: data from mechanical measurements on endothelial (Endo), epithelial (Epi), fibroblast (Fibro), and smooth muscle (SM) cells that are either spread (S), round (R), or exposed to shear flow (F).
Grahic Jump Location
Six-strut tensegrity structure. Struts: AA,BB,CC; cables: AB,AC,BC. Stretching force T/2 is applied at the endpoints A.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In