Fluid Flow and Plaque Formation in an Aortic Bifurcation

[+] Author and Article Information
M. Nazemi, C. Kleinstreuer, J. P. Archie, F. Y. Sorrell

Department of Mechanical and Aerospace Engineering, N.C. State University, Raleigh, NC 27695-7910

J Biomech Eng 111(4), 316-324 (Nov 01, 1989) (9 pages) doi:10.1115/1.3168385 History: Received April 14, 1988; Revised May 17, 1989; Online June 12, 2009


Considering steady laminar flow in a two-dimensional symmetric branching channel with local occlusions, a finite element model has been developed to study velocity fields including reverse flow regions, pressure profiles and wall shear stress distributions for different Reynolds numbers, bifurcation angles and lumen reductions. The flow analysis has been extended to include a new submodel for the pseudo-transient formation of plaque at sites and deposition rates defined by the physical characteristics of the flow. Specifically, simulating the onset of atherosclerotic lesions, sinusoidal plaque layers have been placed in areas of critically low wall shear stresses, and simulating the growth of particle depositions, plaque layers have been added in a stepwise fashion in regions of critically high and low shear. Thus two somewhat conflicting hypothetical correlations between critical wall shear stress levels and atheroma have been tested and a solution has been postulated. The validated computer simulation model is a predictive tool for analyzing the effects of local changes in wall curvature due to surgical reconstruction and/or atherosclerotic lesions, and for investigating the design of aortic bifurcations which mitigate plaque formation.

Copyright © 1989 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In