Mass Transfer to Fluids Flowing Through Rotating Nonaligned Straight Tubes

[+] Author and Article Information
J. Berman

Department of Chemical Engineering, University of Kentucky, Lexington, Ky. 40506

L. F. Mockros

The Technological Institute, Biomedical Engineering Division, Northwestern University, Evanston, Ill. 60201

J Biomech Eng 108(4), 342-349 (Nov 01, 1986) (8 pages) doi:10.1115/1.3138626 History: Received November 15, 1985; Revised July 31, 1986; Online June 12, 2009


Relatively inefficient heat/mass transfer is characteristic of tubular devices if the Reynolds number is low. One method of improving the heat/mass transfer efficiency of such devices is by inducing transverse laminar secondary circulations that are superimposed on the primary flow field; the resulting transverse velocity components lead to fluid mixing and hence augmented mass transfer in the tube lumen. The present work is a theoretical and experimental investigation of the enhanced transport in rotating, nonaligned, straight tubes, a method of transport enhancement that utilizes Coriolis acceleration to create transverse fluid mixing. This technique couples the transport advantages of coiled tubes with the design advantages of straight tubes. The overall mass balance equation is numerically solved for transfer into fluids flowing steadily through rotating nonaligned straight tubes. This solution, for small Coriolis disturbances, incorporates a third order perturbation solution for the primary and secondary flow fields. For sufficiently small Coriolis disturbances the bulk concentration increase is found to be uniquely determined by the value of a single similarity parameter. As the Coriolis disturbance is increased, however, two additional parameters are required to accurately characterize the mass transfer. In general, increasing the Coriolis accelerations results in an increase in mass transfer. There are solution regimes, however, in which increasing this acceleration can lead to a decrease in mass transfer efficiency. This interesting phenomena, which has important design implications, appears to result from velocity-weighting effects on the exiting sample. Experiments, involving the measurement of oxygen transferred into water and blood, produced data that agree with the theoretical predictions.

Copyright © 1986 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In