Torsion and Bending Imposed on a New Anterior Cruciate Ligament Prosthesis During Knee Flexion: An Evaluation Method

[+] Author and Article Information
P. Gely, G. Drouin, P. S. Thiry

Ecole Polytechnique, Montreal, Quebec, Canada

G. R. Tremblay

Hôpital Hôtel Dieu, Montreal, Quebec, Canada

J Biomech Eng 106(4), 285-294 (Nov 01, 1984) (10 pages) doi:10.1115/1.3138496 History: Received June 25, 1982; Revised March 20, 1984; Online June 15, 2009


A new composite prosthesis was recently proposed for the anterior cruciate ligament. It is implanted in the femur and the tibia through two anchoring channels. Its intra-articular portion, composed of a fiber mesh sheath wrapped around a silicons rubber cylindrical core, reproduces satisfactorily the ligament response in tension. However, the prosthesis does not only undergo elongation. In addition, it is submitted to torsion in its intra-articular portion and bending at its ends. This paper presents a new method to evaluate these two types of deformations throughout a knee flexion by means of a geometric model of the implanted prosthesis. Input data originate from two sources: (i) a three-dimensional anatomic topology of the knee joint in full extension, providing the localization of the prosthesis anchoring channels, and ii) a kinematic model of the knee describing the motion of these anchoring channels during a physiological flexion of the knee joint. The evaluation method is independent of the way input data are obtained. This method, applied to a right cadaveric knee, shows that the orientation of the anchoring channels has a large effect on the extent of torsion and bending applied to the implanted prosthesis throughout a knee flexion, especially on the femoral side. The study suggests also the best choice for the anchoring channel axes orientation.

Copyright © 1984 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In