Cycle-Dependent and Time-Dependent Bone Fracture With Repeated Loading

[+] Author and Article Information
D. R. Carter, W. E. Caler

Design Division, Mechanical Engineering Department, Stanford University, Stanford, Calif. 94305

J Biomech Eng 105(2), 166-170 (May 01, 1983) (5 pages) doi:10.1115/1.3138401 History: Received June 06, 1982; Revised November 06, 1982; Online June 15, 2009


Fatigue tests of human cortical bone (up to 1.74 × 106 cycles) were conducted under tension-compression (T-C) and zero-tension (O-T) modes with a 2Hz, stress controlled, sinusoidal loading history. Tensile creep-fracture tests at constant stress levels were also performed. The relationship between the initial cyclic strain range and cycles to failure with the T-C specimens were consistent with that derived previously in low-cycle fatigue under strain control. Using a time-dependent failure model, the creep-fracture data was found to be consistent with previous studies of the influence of strain rate on the monotonic tensile strength of bone. The model also predicted quite well the time to failure for the O-T fatigue specimens, suggesting that creep damage plays an important role in O-T fatigue specimens.

Copyright © 1983 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In