Determining Muscle Forces in the Leg During Normal Human Walking—An Application and Evaluation of Optimization Methods

[+] Author and Article Information
D. E. Hardt

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Mass.

J Biomech Eng 100(2), 72-78 (May 01, 1978) (7 pages) doi:10.1115/1.3426195 History: Received September 12, 1977; Online October 21, 2010


The individual muscle forces in the leg during human walking are unknown, because of a greater number of muscles when compared to degrees of freedom at the joints. The muscle force-joint torque equations can be solved, however, using optimization techniques. A linear programming solution of these equations applied at discrete, time-independent steps in the walking cycle using dynamic joint torque data is presented. The use of this technique, although capable of providing unique solutions, gives questionable muscle force histories when compared to electromyographic data. The reasons for the lack of confidence in the solution are found in the inherent limitations imposed by the linear programming algorithm and in the simplistic treatment of the muscles as tensile force sources rather than complex mechanochemical transducers. The definition of a physiologically rationalized optimal criterion requires both a global optimization approach and more complete modelling of the system.

Copyright © 1978 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In