The aim of this review is to classify and provide a summary of the most widely used theories of continuum mechanics with nonlocal elastic response ranging from generalized continua to peridynamics showing, in broad outlines, the similarities and differences between them. We then show that, for elastic materials, these disparate approaches can be unified using a total energy-based methodology. While our primary focus is on elastic response, we show that a large class of local and nonlocal dissipative systems can also be unified by extending this methodology to a wide (but special) class of nonlocal dissipative continua. We hope that the paper may serve as a starting point for researchers for the development of novel nonlocal models.

References

1.
Silling
,
S. A.
,
Epton
,
M.
,
Weckner
,
O.
,
Xu
,
J.
, and
Askari
,
E.
,
2007
, “
Peridynamic States and Constitutive Modeling
,”
J. Elasticity
,
88
(
2
), pp.
151
184
.
2.
Pfeffer
,
W. F.
,
1987
, “
On the Continuity of the Volterra Variational Derivative
,”
J. Funct. Anal.
,
71
(
1
), pp.
195
197
.
3.
van Leeuwen
,
R.
, and
Baerends
,
E. J.
,
1995
, “
Energy Expressions in Density-Functional Theory Using Line Integrals
,”
Phys. Rev. A
,
51
(
1
), p.
170
.
4.
Bazant
,
Z. P.
, and
Jirásek
,
M.
,
2002
, “
Nonlocal Integral Formulations of Plasticity and Damage: Survey of Progress
,”
J. Eng. Mech.
,
128
(
11
), pp.
1119
1149
.
5.
Haltas
,
I.
, and
Ulusoy
,
S.
,
2015
, “
Scaling and Scale Invariance of Conservation Laws in Reynolds Transport Theorem Framework
,”
Chaos
,
25
(
7
), p.
075406
.
6.
Horstemeyer
,
M. F.
, and
Bammann
,
D. J.
,
2010
, “
Historical Review of Internal State Variable Theory for Inelasticity
,”
Int. J. Plast.
,
26
(
9
), pp.
1310
1334
.
7.
Toupin
,
R. A.
,
1964
, “
Theories of Elasticity With Couple-Stress
,”
Arch. Ration. Mech. Anal.
,
17
(
2
), pp.
85
112
.
8.
Wang
,
C. M.
,
Reddy
,
J. N.
, and
Lee
,
K. H.
,
2000
,
Shear Deformable Beams and Plates: Relationships With Classical Solutions
,
Elsevier
, Oxford, UK.
9.
Reddy
,
J. N.
,
2017
,
Energy Principles and Variational Methods in Applied Mechanics
, 3rd ed.,
Wiley
, New York.
10.
Jasiuk
,
I.
, and
Ostoja-Starzewski
,
M.
,
1995
, “
Planar Cosserat Elasticity of Materials With Holes and Intrusions
,”
ASME Appl. Mech. Rev.
,
48
(11S), pp.
S11
S18
.
11.
Bouyge
,
F.
,
Jasiuk
,
I.
,
Boccara
,
S.
, and
Ostoja-Starzewski
,
M.
,
2002
, “
A Micromechanically Based Couple-Stress Model of an Elastic Orthotropic Two-Phase Composite
,”
Eur. J. Mech. A
,
21
(
3
), pp.
465
481
.
12.
Yoo
,
A.
, and
Jasiuk
,
I.
,
2006
, “
Couple-Stress Moduli of a Trabecular Bone Idealized as a 3D Periodic Cellular Network
,”
J. Biomech.
,
39
(
12
), pp.
2241
2252
.
13.
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
,
1993
, “
A Phenomenological Theory for Strain Gradient Effects in Plasticity
,”
J. Mech. Phys. Solids
,
41
(
12
), pp.
1825
1857
.
14.
Mindlin
,
R. D.
, and
Eshel
,
N. N.
,
1968
, “
On First Strain-Gradient Theories in Linear Elasticity
,”
Int. J. Solids Struct.
,
4
(
1
), pp.
109
124
.
15.
Hadjesfandiari
,
A. R.
, and
Dargush
,
G. F.
,
2011
, “
Couple Stress Theory for Solids
,”
Int. J. Solids Struct.
,
48
(
18
), pp.
2496
2510
.
16.
Srinivasa
,
A. R.
, and
Reddy
,
J. N.
,
2013
, “
A Model for a Constrained, Finitely Deforming, Elastic Solid With Rotation Gradient Dependent Strain Energy, and Its Specialization to von Kármán Plates and Beams
,”
J. Mech. Phys. Solids
,
61
(
3
), pp.
873
885
.
17.
Arbind
,
A.
,
Reddy
,
J. N.
, and
Srinivasa
,
A. R.
,
2017
, “
Nonlinear Analysis of Beams With Rotation Gradient Dependent Potential Energy for Constrained Micro-Rotation
,”
Eur. J. Mech. A
,
65
(
4
), pp.
178
194
.
18.
Yang
,
F.
,
Chong
,
A.
,
Lam
,
D. C. C.
, and
Tong
,
P.
,
2002
, “
Couple Stress Based Strain Gradient Theory for Elasticity
,”
Int. J. Solids Struct.
,
39
(
10
), pp.
2731
2743
.
19.
Park
,
S. K.
, and
Gao
,
X.-L.
,
2008
, “
Variational Formulation of a Modified Couple Stress Theory and Its Application to a Simple Shear Problem
,”
Z. Angew. Math. Phys.
,
59
(
5
), pp.
904
917
.
20.
Ma
,
H. M.
,
Gao
,
X.-L.
, and
Reddy
,
J. N.
,
2008
, “
A Microstructure-Dependent Timoshenko Beam Model Based on a Modified Couple Stress Theory
,”
J. Mech. Phys. Solids
,
56
(
12
), pp.
3379
3391
.
21.
Ma
,
H. M.
,
Gao
,
X.-L.
, and
Reddy
,
J. N.
,
2011
, “
A Non-Classical Mindlin Plate Model Based on a Modified Couple Stress Theory
,”
Acta Mech.
,
220
(
1–4
), pp.
217
235
.
22.
Romanoff
,
J.
,
Reddy
,
J. N.
, and
Jelovica
,
J.
,
2016
, “
Using Non-Local Timoshenko Beam Theories for Prediction of Micro- and Macro-Structural Responses
,”
Compos. Struct.
,
156
, pp.
410
420
.
23.
Reddy
,
J. N.
, and
Srinivasa
,
A. R.
,
2014
, “
Non-Linear Theories of Beams and Plates Accounting for Moderate Rotations and Material Length Scales
,”
Int. J. Non-Linear Mech.
,
66
, pp.
43
53
.
24.
Shield
,
R. T.
,
1973
, “
The Rotation Associated With Large Strains
,”
SIAM J. Appl. Math.
,
25
(
3
), pp.
483
491
.
25.
Eringen
,
A. C.
,
2002
,
Nonlocal Continuum Field Theories
,
Springer Science & Business Media
, New York.
26.
Eringen
,
A. C.
,
2012
,
Microcontinuum Field Theories—I: Foundations and Solids
,
Springer Science & Business Media
, New York.
27.
Eringen
,
A. C.
,
1983
, “
On Differential Equations of Nonlocal Elasticity and Solutions of Screw Dislocation and Surface Waves
,”
J. Appl. Phys.
,
54
(
9
), pp.
4703
4710
.
28.
Lazar
,
M.
,
Maugin
,
G. A.
, and
Aifantis
,
E. C.
,
2006
, “
On a Theory of Nonlocal Elasticity of Bi-Helmholtz Type and Some Applications
,”
Int. J. Solids Struct.
,
43
(
6
), pp.
1404
1421
.
29.
Reddy
,
J. N.
,
2007
, “
Nonlocal Theories for Bending, Buckling and Vibration of Beams
,”
Int. J. Eng. Sci.
,
45
(
2
), pp.
288
307
.
30.
Aifantis
,
E. C.
,
2011
, “
On the Gradient Approach–Relation to Eringen's Nonlocal Theory
,”
Int. J. Eng. Sci.
,
49
(
12
), pp.
1367
1377
.
31.
Silling
,
S. A.
,
2000
, “
Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces
,”
J. Mech. Phys. Solids
,
48
(
1
), pp.
175
209
.
32.
Warren
,
T. L.
,
Silling
,
S. A.
,
Askari
,
A.
,
Weckner
,
O.
,
Epton
,
M. A.
, and
Xu
,
J.
,
2009
, “
A Non-Ordinary State-Based Peridynamic Method to Model Solid Material Deformation and Fracture
,”
Int. J. Solids Struct.
,
46
(
5
), pp.
1186
1195
.
33.
Silling
,
S. A.
, and
Lehoucq
,
R. B.
,
2010
, “
Peridynamic Theory of Solid Mechanics
,”
Adv. Appl. Mech.
,
44
, pp.
73
168
.
34.
Ha
,
Y. D.
, and
Bobaru
,
F.
,
2010
, “
Studies of Dynamic Crack Propagation and Crack Branching With Peridynamics
,”
Int. J. Fract.
,
162
(
1–2
), pp.
229
244
.
35.
Foster
,
J. T.
,
Silling
,
S. A.
, and
Chen
,
W. W.
,
2010
, “
Viscoplasticity Using Peridynamics
,”
Int. J. Numer. Methods Eng.
,
81
(
10
), pp.
1242
1258
.
36.
Chen
,
X.
, and
Gunzburger
,
M.
,
2011
, “
Continuous and Discontinuous Finite Element Methods for a Peridynamics Model of Mechanics
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
9
), pp.
1237
1250
.
37.
Tupek
,
M.
,
Rimoli
,
J.
, and
Radovitzky
,
R.
,
2013
, “
An Approach for Incorporating Classical Continuum Damage Models in State-Based Peridynamics
,”
Comput. Methods Appl. Mech. Eng.
,
263
, pp.
20
26
.
38.
Chowdhury
,
S. R.
,
Roy
,
P.
,
Roy
,
D.
, and
Reddy
,
J. N.
,
2016
, “
A Peridynamic Theory for Linear Elastic Shells
,”
Int. J. Solids Struct.
,
84
, pp.
110
132
.
39.
Hu
,
W.
, 2012, “
Peridynamic Models for Dynamic Brittle Fracture
,”
Ph.D. dissertation
, University of Nebraska, Lincoln, NE.
40.
Amani
,
J.
,
Oterkus
,
E.
,
Areias
,
P.
,
Zi
,
G.
,
Nguyen-Thoi
,
T.
, and
Rabczuk
,
T.
,
2016
, “
A Non-Ordinary State-Based Peridynamics Formulation for Thermoplastic Fracture
,”
Int. J. Impact Eng.
,
87
, pp.
83
94
.
41.
Sarkar, S., Nowruzpour, M., Reddy, J. N., and Srinivasa, A. R., 2017, “
A Discrete Lagrangian Based Direct Approach to Macroscopic Modelling
,”
J. Mech. Phys. Solids
,
98
, pp.
172
180
.
42.
Littlewood
,
D. J.
,
2010
, “
Simulation of Dynamic Fracture Using Peridynamics, Finite Element Modeling, and Contact
,”
ASME
Paper No. IMECE2010-40621.
43.
Beris
,
A. N.
, and
Edwards
,
B. J.
,
1994
,
Thermodynamics of Flowing Systems: With Internal Microstructure
, Vol.
36
,
Oxford University Press
, Oxford, UK.
44.
Mindlin
,
R. D.
,
1965
, “
Stress Functions for a Cosserat Continuum
,”
Int. J. Solids Struct.
,
1
(
3
), pp.
265
271
.
45.
Maugin
,
G. A.
, and
Metrikine
,
A. V.
,
2010
, “
Mechanics of Generalized Continua
,”
Advances in Mechanics and Mathematics
, Vol.
21
, Springer, Berlin.
46.
Green
,
A. E.
, and
Naghdi
,
P. M.
,
1995
, “
A Unified Procedure for Construction of Theories of Deformable Media—II: Generalized Continua
,”
Proc. R. Soc. London, Ser. A
,
448
(
1934
), pp.
357
377
.
47.
Green
,
A. E.
,
Naghdi
,
P. M.
, and
Rivlin
,
R. S.
,
1965
, “
Directors and Multipolar Displacements in Continuum Mechanics
,”
Int. J. Eng. Sci.
,
2
(
6
), pp.
611
620
.
48.
Antman
,
S. S.
,
1973
, “
The Theory of Rods
,”
Linear Theories of Elasticity and Thermoelasticity
,
Springer
, Berlin, pp.
641
703
.
49.
Naghdi
,
P. M.
,
1973
, “
The Theory of Shells and Plates
,”
Linear Theories of Elasticity and Thermoelasticity
,
Springer
, Berlin, pp.
425
640
.
50.
Pai
,
D. K.
,
2002
, “
Strands: Interactive Simulation of Thin Solids Using Cosserat Models
,”
Comput. Graphics Forum
,
21
(3), pp.
347
352
.
51.
Manning
,
R. S.
,
Maddocks
,
J. H.
, and
Kahn
,
J. D.
,
1996
, “
A Continuum Rod Model of Sequence-Dependent DNA Structure
,”
J. Chem. Phys.
,
105
(
13
), pp.
5626
5646
.
52.
Leslie
,
F. M.
,
1971
, “
Continuum Theory of Liquid Crystals
,”
Rheol. Acta
,
10
(
1
), pp.
91
95
.
53.
Lurie
,
S.
,
Volkov-Bogorodsky
,
D.
,
Zubov
,
V.
, and
Tuchkova
,
N.
,
2009
, “
Advanced Theoretical and Numerical Multiscale Modeling of Cohesion/Adhesion Interactions in Continuum Mechanics and Its Applications for Filled Nanocomposites
,”
Comput. Mater. Sci.
,
45
(
3
), pp.
709
714
.
54.
Green
,
A. E.
, and
Rivlin
,
R. S.
,
1965
, “
Multipolar Continuum Mechanics: Functional Theory—I
,”
Proc. R. Soc. London, Ser. A
,
284
(
1398
), pp.
303
324
.
55.
Green
,
A. E.
,
McInnis
,
B. C.
, and
Naghdi
,
P. M.
,
1968
, “
Elastic-Plastic Continua With Simple Force Dipole
,”
Int. J. Eng. Sci.
,
6
(
7
), pp.
373
394
.
56.
Green
,
A. E.
, and
Naghdi
,
P. M.
,
1965
, “
Plasticity Theory and Multipolar Continuum Mechanics
,”
Mathematika
,
12
(
01
), pp.
21
26
.
57.
Batra
,
R. C.
,
1987
, “
The Initiation and Growth of, and the Interaction Among, Adiabatic Shear Bands in Simple and Dipolar Materials
,”
Int. J. Plast.
,
3
(
1
), pp.
75
89
.
58.
Eshelby
,
J. D.
,
1956
, “
The Continuum Theory of Lattice Defects
,”
Solid State Phys.
,
3
, pp.
79
144
.
59.
Eshelby
,
J. D.
,
1999
, “
Energy Relations and the Energy-Momentum Tensor in Continuum Mechanics
,”
Fundamental Contributions to the Continuum Theory of Evolving Phase Interfaces in Solids
,
Springer
, New York, pp.
82
119
.
60.
Epstein
,
M.
, and
Maugin
,
G. A.
,
1990
, “
The Energy-Momentum Tensor and Material Uniformity in Finite Elasticity
,”
Acta Mech.
,
83
(
3–4
), pp.
127
133
.
61.
Naghdi
,
P. M.
, and
Srinivasa
,
A. R.
,
1993
, “
A Dynamical Theory of Structured Solids—I: Basic Developments
,”
Philos. Trans. R. Soc. London, Ser. A
,
345
(
1677
), pp.
425
458
.
62.
Gurtin
,
M. E.
,
1999
, “
The Nature of Configurational Forces
,”
Fundamental Contributions to the Continuum Theory of Evolving Phase Interfaces in Solids
,
Springer
, New York, pp.
281
314
.
63.
Gross
,
D.
,
Kolling
,
S.
,
Mueller
,
R.
, and
Schmidt
,
I.
,
2003
, “
Configurational Forces and Their Application in Solid Mechanics
,”
Eur. J. Mech. A
,
22
(
5
), pp.
669
692
.
64.
Gurtin
,
M. E.
,
2008
,
Configurational Forces as Basic Concepts of Continuum Physics
, Vol.
137
,
Springer Science & Business Media
, New York.
65.
Naghdi
,
P. M.
, and
Srinivasa
,
A. R.
,
1994
, “
Characterization of Dislocations and Their Influence on Plastic Deformation in Single Crystals
,”
Int. J. Eng. Sci.
,
32
(
7
), pp.
1157
1182
.
66.
Rajagopal
,
K. R.
, and
Srinivasa
,
A. R.
,
2005
, “
On the Role of the Eshelby Energy-Momentum Tensor in Materials With Multiple Natural Configurations
,”
Math. Mech. Solids
,
10
(
1
), pp.
3
24
.
67.
Baek
,
S.
, and
Srinivasa
,
A. R.
,
2003
, “
A Variational Procedure Utilizing the Assumption of Maximum Dissipation Rate for Gradient-Dependent Elastic–Plastic Materials
,”
Int. J. Non-Linear Mech.
,
38
(
5
), pp.
659
662
.
68.
Ziegler
,
H.
,
1968
, “
A Possible Generalization of Onsager's Theory
,”
Irreversible Aspects of Continuum Mechanics and Transfer of Physical Characteristics in Moving Fluids
,
Springer
, New York, pp.
411
424
.
69.
Rajagopal
,
K. R.
, and
Srinivasa
,
A. R.
,
2004
, “
On Thermomechanical Restrictions of Continua
,”
Proc. R. Soc. London, Ser. A
,
460
(
2042
), pp.
631
651
.
70.
Lee
,
E. H.
,
1969
, “
Elastic-Plastic Deformation at Finite Strains
,”
ASME J. Appl. Mech.
,
36
(
1
), pp.
1
6
.
71.
Eckart
,
C.
,
1948
, “
The Thermodynamics of Irreversible Processes—IV: The Theory of Elasticity and Anelasticity
,”
Phys. Rev.
,
73
(
4
), p.
373
.
72.
Rajagopal
,
K. R.
, and
Srinivasa
,
A. R.
,
1998
, “
Mechanics of the Inelastic Behavior of Materials—Part 1: Theoretical Underpinnings
,”
Int. J. Plast.
,
14
(
10
), pp.
945
967
.
73.
Grassl
,
P.
,
Xenos
,
D.
,
Jirásek
,
M.
, and
Horák
,
M.
,
2014
, “
Evaluation of Nonlocal Approaches for Modelling Fracture Near Nonconvex Boundaries
,”
Int. J. Solids Struct.
,
51
(
18
), pp.
3239
3251
.
74.
Provatas
,
N.
, and
Elder
,
K.
,
2011
,
Phase-Field Methods in Materials Science and Engineering
,
Wiley
,
New York
.
75.
Mitchell
,
J. A.
,
2011
, “
A Nonlocal, Ordinary, State-Based Plasticity Model for Peridynamics
,” Sandia National Laboratories, Albuquerque, NM, Report No.
SAND2011-3166
.
76.
Sun
,
S.
, and
Sundararaghavan
,
V.
,
2014
, “
A Peridynamic Implementation of Crystal Plasticity
,”
Int. J. Solids Struct.
,
51
(
19
), pp.
3350
3360
.
77.
Reddy
,
J. N.
, and
Srinivasa
,
A. R.
,
2015
, “
On the Force–Displacement Characteristics of Finite Elements for Elasticity and Related Problems
,”
Finite Elem. Anal. Des.
,
104
, pp.
35
40
.
78.
Kaufman
,
A. N.
,
1984
, “
Dissipative Hamiltonian Systems: A Unifying Principle
,”
Phys. Lett. A
,
100
(
8
), pp.
419
422
.
79.
Grmela
,
M.
, and
Öttinger
,
H. C.
,
1997
, “
Dynamics and Thermodynamics of Complex Fluids—I: Development of a General Formalism
,”
Phys. Rev. E
,
56
(
6
), p.
6620
.
80.
Beris
,
A. N.
,
2001
, “
Bracket Formulation as a Source for the Development of Dynamic Equations in Continuum Mechanics
,”
J. Non-Newtonian Fluid Mech.
,
96
(
1
), pp.
119
136
.
81.
Clausius, R., and Hirst, T. A.,
2012
,
The Mechanical Theory of Heat: With Its Applications to the Steam-Engine and to the Physical Properties of Bodies
, Ulan Press, Paris, France.
82.
Truesdell
,
C.
, and
Muncaster
,
R. G.
,
1980
, “
Fundamentals of Maxwell's Kinetic Theory of a Simple Monatomic Gas: Treated as a Branch of Rational Mechanics
,”
Research Supported by the National Science Foundation
(Pure and Applied Mathematics, Vol.
83
),
Academic Press
,
New York
, p.
1
.
83.
De Groot
,
S. R.
, and
Mazur
,
P.
,
2011
,
Non-Equilibrium Thermodynamics
,
Dover
, New York.
84.
Onsager
,
L.
,
1931
, “
Reciprocal Relations in Irreversible Processes—I
,”
Phys. Rev.
,
37
(
4
), p.
405
.
85.
Onsager
,
L.
,
1931
, “
Reciprocal Relations in Irreversible Processes—II
,”
Phys. Rev.
,
38
(
12
), p.
2265
.
86.
Ziegler
,
H.
,
1962
, “
Some Extremum Principles in Irreversible Thermodynamics, With Application to Continuum Mechanics
,”
J. Appl. Math. Mech.
,
45
(4), p. 271.
87.
Allen
,
S. M.
, and
Cahn
,
J. W.
,
1979
, “
A Microscopic Theory for Antiphase Boundary Motion and Its Application to Antiphase Domain Coarsening
,”
Acta Metall.
,
27
(
6
), pp.
1085
1095
.
88.
Cahn
,
J. W.
,
1961
, “
On Spinodal Decomposition
,”
Acta Metall.
,
9
(
9
), pp.
795
801
.
89.
Rajagopal
,
K. R.
, and
Srinivasa
,
A. R.
,
2007
, “
On the Response of Non-Dissipative Solids
,”
Proc. R. Soc. London, Ser. A
,
463
(
2078
), pp.
357
367
.
90.
Rajagopal
,
K. R.
, and
Srinivasa
,
A. R.
,
2009
, “
On a Class of Non-Dissipative Materials That are Not Hyperelastic
,”
Proc. R. Soc. London, Ser. A
,
465
(
2102
), pp.
493
500
.
You do not currently have access to this content.