This paper presents an overview of the Trefftz finite element and its application in various engineering problems. Basic concepts of the Trefftz method are discussed, such as T-complete functions, special purpose elements, modified variational functionals, rank conditions, intraelement fields, and frame fields. The hybrid-Trefftz finite element formulation and numerical solutions of potential flow problems, plane elasticity, linear thin and thick plate bending, transient heat conduction, and geometrically nonlinear plate bending are described. Formulations for all cases are derived by means of a modified variational functional and T-complete solutions. In the case of geometrically nonlinear plate bending, exact solutions of the Lamé-Navier equations are used for the in-plane intraelement displacement field, and an incremental form of the basic equations is adopted. Generation of elemental stiffness equations from the modified variational principle is also discussed. Some typical numerical results are presented to show the application of the finite element approach. Finally, a brief summary of the approach is provided and future trends in this field are identified. There are 151 references cited in this revised article.

1.
Jirousek
,
J.
, 1978, “
Basis for Development of Large Finite Elements Locally Satisfying All Field Equations
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
14
, pp.
65
92
.
2.
Jirousek
,
J.
, and
Leon
,
N.
, 1977, “
A Powerful Finite Element for Plate Bending
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
12
, pp.
77
96
.
3.
Herrera
,
I.
, 1977, “
General Variational Principles Applicable to the Hybrid Element Method
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
74
, pp.
2595
2597
.
4.
Herrera
,
I.
, 1980, “
Boundary Methods: A Criterion for Completeness
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
77
, pp.
4395
4398
.
5.
Herrera
,
I.
,
Ewing
,
R. E.
,
Celia
,
M. A.
, and
Russell
,
T.
, 1993, “
Eulerian-Lagrangian Localized Adjoint Method: The Theoretical Framework
,”
Numer. Methods Partial Differ. Equ.
0749-159X
9
, pp.
431
457
.
6.
Herrera
,
I.
, and
Sabina
,
F. J.
, 1978, “
Connectivity as an Alternative to Boundary Integral Equations: Construction of Bases
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
75
, pp.
2059
2063
.
7.
Trefftz
,
E.
, 1926,
Ein Gegenstück zum Ritzschen Verfahren
,
Proc. of 2nd Int. Congress of Applied Mechanics
, Zurich, Robinson and Associates, Bridestowe, pp.
131
137
.
8.
Jirousek
,
J.
, and
N’Diaye
,
M.
, 1990, “
Solution of Orthotropic Plates Based on p-Extension of the Hybrid-Trefftz Finite Element Model
,”
Comput. Struct.
0045-7949,
34
, pp.
51
62
.
9.
Jirousek
,
J.
, and
Wroblewski
,
A.
, 1996, “
T-Elements: State of the Art and Future Trends
,”
Arch. Comput. Methods Eng.
1134-3060,
3
, pp.
323
434
.
10.
Diab
,
S. A.
, 2001, “
The Natural Boundary Conditions as a Variational Basis for Finite Element Methods
,”
Comput. Assist. Mech. Eng. Sci.
,
8
, pp.
213
226
.
11.
Freitas
,
J. A. T.
, and
Ji
,
Z. Y.
, 1996, “
Hybrid-Trefftz Equilibrium Model for Crack Problems
,”
Int. J. Numer. Methods Eng.
0029-5981,
39
, pp.
569
584
.
12.
Herrera
,
I.
, 2001, “
On Jirousek Method and its Generalization
,”
Comput. Assist. Mech. Eng. Sci.
,
8
, pp.
325
342
.
13.
Jirousek
,
J.
, and
Venkatesh
,
A.
, 1989, “
A Simple Stress Error Estimator for Hybrid-Trefftz p-Version Elements
,”
Int. J. Numer. Methods Eng.
0029-5981,
28
, pp.
211
236
.
14.
Kita
,
E.
,
Kamiya
,
N.
, and
Ikeda
,
Y.
, 1996, “
New Boundary-Type Scheme for Sensitivity Analysis Using Trefftz Formulation
,”
Finite Elem. Anal. Design
0168-874X
21
, pp.
301
317
.
15.
Lifits
,
S.
,
Reutskiy
,
S.
, and
Tirozzi
,
B.
, 1997, “
Trefftz Spectral Method for Initial-Boundary Problems
,”
Comput. Assist. Mech. Eng. Sci.
,
4
, pp.
549
565
.
16.
Markiewicz
,
M.
, and
Mahrenholtz
,
O.
, 1997, “
Combined Time-Stepping and Trefftz Approach for Nonlinear Wave-Structure Interaction
,”
Comput. Assist. Mech. Eng. Sci.
,
4
, pp.
567
586
.
17.
Maunder
,
E. A. W.
, and
Almeida
,
J. P. M.
, 1997, “
Hybrid-Equilibrium Elements With Control of Spurious Kinematic Modes
,”
Comput. Assist. Mech. Eng. Sci.
,
4
, pp.
587
605
.
18.
Melenk
,
J. M.
, and
Babuska
,
I.
, 1997, “
Approximation With Harmonic and Generalized Harmonic Polynomials in the Partition of Unity Method
,”
Comput. Assist. Mech. Eng. Sci.
4
, pp.
607
632
.
19.
Ohnimus
,
S.
,
Rüter
,
M.
, and
Stein
,
E.
, 2001, “
General Aspects of Trefftz Method and Relations to Error Estimation of Finite Element Approximations
,”
Comput. Assist. Mech. Eng. Sci.
,
8
, pp.
425
437
.
20.
Peters
,
K.
, and
Wagner
,
W.
, 1994, “
New Boundary-Type Finite Element for 2-D and 3-D Elastic Structures
,”
Int. J. Numer. Methods Eng.
0029-5981,
37
, pp.
1009
1025
.
21.
Piltner
,
R.
, 1997, “
On the Systematic Construction of Trial Functions for Hybrid Trefftz Shell Elements
,”
Comput. Assist. Mech. Eng. Sci.
,
4
, pp.
633
644
.
22.
Qin
,
Q. H.
, 1994, “
Hybrid Trefftz Finite Element Approach for Plate Bending on an Elastic Foundation
,”
Appl. Math. Model.
0307-904X,
18
, pp.
334
339
.
23.
Zheng
,
X. P.
, and
Yao
,
Z. H.
, 1995, “
Some Applications of the Trefftz Method in Linear Elliptic Boundary-Value Problems
,”
Adv. Eng. Software
0965-9978,
24
, pp.
133
145
.
24.
Jirousek
,
J.
, and
Teodorescu
,
P.
, 1982, “
Large Finite Elements Method for the Solution of Problems in the Theory of Elasticity
,”
Comput. Struct.
0045-7949,
15
, pp.
575
587
.
25.
Jirousek
,
J.
, and
Venkatesh
,
A.
, 1992, “
Hybrid-Trefftz Plane Elasticity Elements With p-Method Capabilities
,”
Int. J. Numer. Methods Eng.
0029-5981,
35
, pp.
1443
1472
.
26.
Leitao
,
V. M. A.
, 2001, “
Comparison of Galerkin and Collocation Trefftz Formulations for Plane Elasticity
,”
Comput. Assist. Mech. Eng. Sci.
,
8
, pp.
397
407
.
27.
Piltner
,
R.
, 1985, “
Special Finite Elements With Holes and Internal Cracks
,”
Int. J. Numer. Methods Eng.
0029-5981,
21
, pp.
1471
1485
.
28.
Stein
,
E.
, and
Peters
,
K.
, 1991, “
A New Boundary-Type Finite Element for 2D and 3D Elastic Solids
,”
The Finite Element Method in the 1990s, A Book Dedicated to OC Zienkiewicz
,
E.
Onate
,
J.
Periaux
, and
A.
Samuelson
eds.,
Springer
, Berlin, pp.
35
48
.
29.
Jirousek
,
J.
, 1987, “
Hybrid-Trefftz Plate Bending Elements With p-Method Capabilities
,”
Int. J. Numer. Methods Eng.
0029-5981,
24
, pp.
1367
1393
.
30.
Jirousek
,
J.
, and
Guex
,
L.
, 1986, “
The Hybrid-Trefftz Finite Element Model and Its Application to Plate Bending
,”
Int. J. Numer. Methods Eng.
0029-5981,
23
, pp.
651
693
.
31.
Jirousek
,
J.
,
Szybinski
,
B.
and
Zielinski
,
A. P.
, 1997, “
Study of a Family of Hybrid-Trefftz Folded Plate p-Version Elements
,”
Comput. Assist. Mech. Eng. Sci.
,
4
, pp.
453
476
.
32.
Jin
,
F. S.
, and
Qin
,
Q. H.
, 1995, “
A Variational Principle and Hybrid Trefftz Finite Element for the Analysis of Reissner Plates
,
Comput. Struct.
0045-7949,
56
, pp.
697
701
.
33.
Jirousek
,
J.
,
Wroblewski
,
A.
,
Qin
,
Q. H.
, and
He
,
X. Q.
, 1995, “
A Family of Quadrilateral Hybrid Trefftz p-Element for Thick Plate Analysis
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
127
, pp.
315
344
.
34.
Jirousek
,
J.
,
Wroblewski
,
A.
, and
Szybinski
,
B.
, 1995, “
A New 12 DOF Quadrilateral Element for Analysis of Thick and Thin Plates
,”
Int. J. Numer. Methods Eng.
0029-5981,
38
, pp.
2619
2638
.
35.
Maunder
,
E. A. W.
, 2001, “
A Trefftz Patch Recovery Method for Smooth Stress Resultants and Applications to Reissner-Mindlin Equilibrium Plate Models
,”
Comput. Assist. Mech. Eng. Sci.
,
8
, pp.
409
424
.
36.
Qin
,
Q. H.
, 1995, “
Hybrid Trefftz Finite Element Method for Reissner Plates on an Elastic Foundation
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
122
, pp.
379
392
.
37.
Petrolito
,
J.
, 1990, “
Hybrid-Trefftz Quadrilateral Elements for Thick Plate Analysis
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
78
, pp.
331
351
.
38.
Petrolito
,
J.
, 1996, “
Triangular Thick Plate Elements Based on a Hybrid-Trefftz Approach
,”
Comput. Struct.
0045-7949,
60
, pp.
883
894
.
39.
Piltner
,
R.
, 1992,
A Quadrilateral Hybrid-Trefftz Plate Bending Element for the Inclusion of Warping Based on a Three-Dimensional Plate Formulation
,”
Int. J. Numer. Methods Eng.
0029-5981,
33
, pp.
387
408
.
40.
Piltner
,
R.
, 1989, “
On the Representation of Three-Dimensional Elasticity Solutions With the Aid of Complex Value Functions
,”
J. Elast.
0374-3535,
22
, pp.
45
55
.
41.
Wroblewski
,
A.
,
Zielinski
,
A. P.
, and
Jirousek
,
J.
, 1992, “
Hybrid-Trefftz p-Element for 3-D Axisymmetric Problems of Elasticity
”,
Numerical Methods in Engineering ’92, Proc. First Europ. Conf. on Numer. Meth. in Eng.
,
C.
Hirsch
,
O. C.
Zienkiewicz
, and
E.
Onãte
, eds.,
Elsevier
, Brussels, pp.
803
810
.
42.
Jirousek
,
J.
, and
Stojek
,
M.
, 1995, “
Numerical Assessment of a New T-Element Approach
,”
Comput. Struct.
0045-7949,
57
, pp.
367
378
.
43.
Zielinski
,
A. P.
, and
Zienkiewicz
,
O. C.
, 1985, “
Generalized Finite Element Analysis With T-Complete Boundary Solution Functions
,”
Int. J. Numer. Methods Eng.
0029-5981,
21
, pp.
509
528
.
44.
Vörös
,
G. M.
, and
Jirousek
,
J.
, 1991, “
Application of the Hybrid-Trefftz Finite Element Model to Thin Shell Analysis
,”
Proc. Europ. Conf. on New Advances in Comp. Struc. Mech.
,
P.
Ladeveze
and
O. C.
Zienkiewicz
, eds.,
Elsevier
, Giens, France, pp.
547
554
.
45.
Freitas
,
J. A. T.
, 1997, “
Hybrid-Trefftz Displacement and Stress Elements for Elasto-Dynamic Analysis in the Frequency Domain
,”
Comput. Assist. Mech. Eng. Sci.
,
4
, pp.
345
368
.
46.
Jirousek
,
J.
, 1997, “
A T-Element Approach to Forced Vibration Analysis and Its Application to Thin Plates
,” LSC Internal Report 97∕03,
Swiss Federal Institute of Technology
, Lausanne.
47.
Qin
,
Q. H.
, 1996, “
Transient Plate Bending Analysis by Hybrid Trefftz Element Approach
,”
Commun. Numer. Methods Eng.
1069-8299,
12
, pp.
609
616
.
48.
Jirousek
,
J.
, and
Qin
,
Q. H.
1996, “
Application of Hybrid-Trefftz Element Approach to Transient Heat Conduction Analysis
,”
Comput. Struct.
0045-7949,
58
, pp.
195
201
.
49.
Qin
,
Q. H.
, 1995, “
Postbuckling Analysis of Thin Plates by a Hybrid Trefftz Finite Element Method
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
128
, pp.
123
136
.
50.
Qin
,
Q. H.
, 1996, “
Nonlinear Analysis of Thick Plates by HT FE Approach
,”
Comput. Struct.
0045-7949,
61
, pp.
271
281
.
51.
Qin
,
Q. H.
, 1997, “
Postbuckling Analysis of Thin Plates on an Elastic Foundation by HT FE Approach
,”
Appl. Math. Model.
0307-904X,
21
, pp.
547
556
.
52.
Qin
,
Q. H.
, and
Diao
,
S.
, 1996, “
Nonlinear Analysis of Thick Plates on an Elastic Foundation by HT FE With p-Extension Capabilities
,”
Int. J. Solids Struct.
0020-7683,
33
, pp.
4583
4604
.
53.
Bussamra
,
F. L. S.
,
Pimenta
,
P. M.
, and
Freitas
,
J. A. T.
, 2001, “
Hybrid-Trefftz Stress Elements for Three-Dimensional Elastoplasticity
,”
Comput. Assist. Mech. Eng. Sci.
,
8
, pp.
235
246
.
54.
Freitas
,
J. A. T.
, and
Wang
,
Z. M.
, 1998, “
Hybrid-Trefftz Stress Elements for Elastoplasticity
,”
Int. J. Numer. Methods Eng.
0029-5981,
43
, pp.
655
683
.
55.
Zielinski
,
A. P.
, 1988, “
Trefftz Method: Elastic and Elastoplastic Problems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
69
, pp.
185
204
.
56.
Qin
,
Q. H.
, 2003, “
Variational Formulations for TFEM of Piezoelectricity
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
6335
6346
.
57.
Qin
,
Q. H.
, 2003, “
Solving Anti-Plane Problems of Piezoelectric Materials by the Trefftz Finite Element Approach
,”
Comput. Mech.
0178-7675,
31
, pp.
461
468
.
58.
Venkatesh
,
A.
, and
Jirousek
,
J.
, 1995, “
Accurate Representation of Local Effect Due to Concentrated and Discontinuous Loads in Hybrid-Trefftz Plate Bending Elements
,”
Comput. Struct.
0045-7949,
57
, pp.
863
870
.
59.
Jirousek
,
J.
,
Venkatesh
,
A.
,
Zielinski
,
A. P.
, and
Rabemanantsoo
,
H.
, 1993, “
Comparative Study of p-Extensions Based on Conventional Assumed Displacement and Hybrid-Trefftz FE Models
,”
Comput. Struct.
0045-7949,
46
, pp.
261
278
.
60.
Huang
,
H. T.
, and
Li
,
Z. C.
, 2003, “
Global Superconvergence of Adini’s Elements Coupled With Trefftz Method for Singular Problems
,”
Eng. Anal. Boundary Elem.
0955-7997,
27
, pp.
227
240
.
61.
Qin
,
Q. H.
, 2000,
The Trefftz Finite and Boundary Element Method
,
WIT Press
, Southampton.
62.
Herrera
,
I.
, 1997, “
Trefftz-Herrera Method
,”
Comput. Assist. Mech. Eng. Sci.
,
4
, pp.
369
382
.
63.
Jirousek
,
J.
, 1991, “
New Trends in HT-p Element Approach
,”
The Finite Element Method in the 1990s
,
E.
Onate
,
J.
Periaux
, and
A.
Samuelson
, eds.,
Springer
, Berlin.
64.
Jirousek
,
J.
, and
Wroblewski
,
A.
, 1995, “
T-Elements: A Finite Element Approach With Advantages of Boundary Solution Methods
,
Adv. Eng. Software
0965-9978
24
,
71
-
88
.
65.
Jirousek
,
J.
, and
Zieliński
,
A. P.
, 1997, “
Survey of Trefftz-Type Element Formulations
,”
Comput. Struct.
0045-7949,
63
, pp.
225
242
.
66.
Kita
,
E.
, and
Kamiya
,
N.
, 1995, “
Trefftz Method: An Overview
,”
Adv. Eng. Software
0965-9978,
24
, pp.
3
12
.
67.
Qin
,
Q. H.
, 1993, “
A Brief Introduction and Prospect to Hybrid-Trefftz Finite Elements
,”
Mech. Pract.
1000-0879,
15
, pp.
20
22
(in Chinese).
68.
Qin
,
Q. H.
, 1998, “
The Study and Prospect of Hybrid-Trefftz Finite Element Method
,”
Adv. Mech.
0137-3722,
28
, pp.
71
80
(in Chinese).
69.
Zienkiewicz
,
O. C.
, 1997, “
Trefftz Type Approximation and the Generalised Finite Element Method: History and Development
,”
Comput. Assist. Mech. Eng. Sci.
,
4
, pp.
305
316
.
70.
Gourgeon
,
H.
, and
Herrera
,
I.
, 1981, “
Boundary Methods: C-Complete Systems for Biharmonic Equations
,”
Boundary Element Methods
,
C. A.
Brebbia
, ed., pp.
431
441
,
Springer-Verlag
, Berlin.
71.
Herrera
,
I.
, 1977, “
Theory of Connectivity Formal Symmetric Operators
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
74
, pp.
4722
4725
.
72.
Celia
,
M.
, and
Herrera
,
I.
, 1987, “
Solution of General Differential Equations Using the Algebraic Theory Approach
,”
Numer. Methods Partial Differ. Equ.
0749-159X,
3
, pp.
117
129
.
73.
Herrera
,
I.
, 1987, “
The Algebraic Theory Approach for Ordinary Differential Equations: Highly Accurate Finite Differences
,”
Numer. Methods Partial Differ. Equ.
0749-159X,
3
, pp.
199
218
.
74.
Herrera
,
I.
, 1992, “
Localized Adjoint Methods: A New Discretization Methodology
,”
Computational Methods in Geosciences
,
W. E.
Fitzgibbon
and
M. F.
Wheeler
, eds.,
SIAM
, Philadelphia, Chap. 6, pp.
66
77
.
75.
Herrera
,
I.
, 2000, “
Trefftz Method: A General Theory
,”
Numer. Methods Partial Differ. Equ.
0749-159X,
16
, pp.
561
580
.
76.
Herrera
,
I.
, 2002, “
The Indirect Approach to Domain Decomposition
,”
14th Int. Conf. on Domain Decomposition Methods
,
Cocoyoc
, Mor., Mex.,
Invited Plenary Lecture
, www.ddm.orgwww.ddm.org
77.
Herrera
,
I.
2002, “
A Unified Theory of Domain Decomposition Methods
,”
14th Int. Conf. on Domain Decomposition Methods
,
Cocoyoc
, Mor., Mex., www.ddm.orgwww.ddm.org
78.
Herrera
,
I.
, and
Yates
,
R.
, 2001, “
General Theory of Domain Decomposition: Beyond Schwarz Methods
,”
Numer. Methods Partial Differ. Equ.
0749-159X,
17
, pp.
495
517
.
79.
Herrera
,
I.
,
Yates
,
R.
, and
Diaz
,
M.
, 2002, “
General Theory of Domain Decomposition: Indirect Methods
,”
Numer. Methods Partial Differ. Equ.
0749-159X,
18
, pp.
296
322
.
80.
Díaz
,
M.
,
Herrera
,
I.
, and
Yates
,
R.
, 2002, “
Indirect Method of Collocation
,”
14th Int. Conf. on Domain Decomposition Methods
,
Cocoyoc
, Mor., Mex., www.ddm.orgwww.ddm.org
81.
Yates
,
R.
, and
Herrera
,
I.
, 2002, “
Parallel Implementation of Indirect Collocation Methods
,”
14th Int. Conf. on Domain Decomposition Methods
,
Cocoyoc
, Mor., Mex. www.ddm.orgwww.ddm.org
82.
Herrera
,
I.
, 1985, “
Unified Approach to Numerical Methods. I. Green’s Formulas for Operators in Discontinuous Fields
,”
Numer. Methods Partial Differ. Equ.
0749-159X,
1
, pp.
12
37
.
83.
Herrera
,
I.
,
Chargoy
,
L.
, and
Alduncin
,
G.
, 1985, “
Unified Approach to Numerical Methods. Part 3. Finite Differences and Ordinary Differential Equations
,”
Numer. Methods Partial Differ. Equ.
0749-159X,
1
, pp.
241
258
.
84.
Jirousek
,
J.
, 1993, “
Variational Formulation of Two Complementary Hybrid-Trefftz FE Models
,”
Commun. Numer. Methods Eng.
1069-8299,
9
, pp.
837
845
.
85.
Jirousek
,
J.
, and
Zielinski
,
A. P.
, 1993, “
Dual Hybrid-Trefftz Element Formulation Based on Independent Boundary Traction Frame
,”
Int. J. Numer. Methods Eng.
0029-5981,
36
, pp.
2955
2980
.
86.
Cheung
,
Y. K.
,
Jin
,
W. G.
, and
Zienkiewicz
,
O. C.
, 1989, “
Direct Solution Procedure for Solution of Harmonic Problems Using Complete, Non-Singular, Trefftz Functions
,”
Commun. Appl. Numer. Methods
0748-8025,
5
, pp.
159
169
.
87.
Cheung
,
Y. K.
,
Jin
,
W. G.
, and
Zienkiewicz
,
O. C.
, 1991, “
Solution of Helmholtz Equation by Trefftz Method
,”
Int. J. Numer. Methods Eng.
0029-5981,
32
, pp.
63
78
.
88.
Jirousek
,
J.
, and
Wroblewski
,
A.
, 1994, “
Least-Squares T-Elements: Equivalent FE and BE Forms of a Substructure-Oriented Boundary Solution Approach
,”
Commun. Numer. Methods Eng.
1069-8299,
10
, pp.
21
32
.
89.
Stojek
,
M.
, 1998, “
Least-Squares Trefftz-Type Elements for the Helmholtz Equation
,”
Int. J. Numer. Methods Eng.
0029-5981,
41
, pp.
831
849
.
90.
Cialkowski
,
M. J.
, 2001, “
Trefftz Functions as Basic Functions of FEM in Application to Solution of Inverse Heat Conduction Problem
,”
Comput. Assist. Mech. Eng. Sci.
,
8
, pp.
247
260
.
91.
Desmet
,
W.
,
Sas
,
P.
, and
Vandepitte
,
D.
, 2001, “
An Indirect Trefftz Method for the Steady-State Dynamic Analysis of Coupled Vibro-Acoustic Systems
,”
Comput. Assist. Mech. Eng. Sci.
,
8
, pp.
271
288
.
92.
Hsiao
,
G. C.
,
Schnack
,
E.
, and
Wendland
,
W. L.
, 2000, “
Hybrid Coupled Finite-Boundary Element Methods for Elliptic Systems of Second Order
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
, pp.
431
485
.
93.
Ihlenburg
,
F.
, and
Babuska
,
I.
, 1997, “
Solution of Helmholtz Problems by Knowledge-Based FEM
,”
Comput. Assist. Mech. Eng. Sci.
,
4
, pp.
397
415
.
94.
Kita
,
E.
,
Kamiya
,
N.
, and
Ikeda
,
Y.
, 1997, “
First- and Second-Order Sensitivity Analysis Schemes by Collocation-Type Trefftz Method
,”
Comput. Assist. Mech. Eng. Sci.
,
4
, pp.
477
489
.
95.
Kolodziej
,
J. A.
, and
Mendes
,
A. C.
, 2001, “
T-Functions for 2-D Creeping Flow on Domains With Circular Cylinders, Corners, and Processing Symmetry
,”
Comput. Assist. Mech. Eng. Sci.
,
8
, pp.
359
384
.
96.
Kolodziej
,
J. A.
, and
Uscilowska
,
A.
, 1997, “
Trefftz-Type Procedure for Laplace Equation on Domains With Circular Holes, Circular Inclusions, Corners, Slits, and Symmetry
,”
Comput. Assist. Mech. Eng. Sci.
4
, pp.
501
519
.
97.
Stojek
,
M.
,
Markiewicz
,
M.
, and
Mahrenholtz
,
O.
, 2000, “
Diffraction Loads on Multiple Vertical Cylinders With Rectangular Cross Section by Trefftz-Type Finite Elements
,”
Comput. Struct.
0045-7949,
75
, pp.
335
345
.
98.
Zielinski
,
A. P.
, 1997, “
Special Trefftz Elements and Improvement of Their Conditioning
,”
Commun. Numer. Methods Eng.
1069-8299,
13
, pp.
765
775
.
99.
Freitas
,
J. A. T.
, and
Bussamra
,
F. L. S.
, 2000, “
Three-Dimensional Hybrid-Trefftz Stress Elements
,”
Int. J. Numer. Methods Eng.
0029-5981,
47
, pp.
927
950
.
100.
Freitas
,
J. A. T.
, and
Cismasiu
,
I.
, 2002, “
Shape Optimizing With Hybrid-Trefftz Displacement Elements
,”
Int. J. Numer. Methods Eng.
0029-5981,
53
, pp.
473
498
.
101.
Hsiao
,
G. C.
,
Schnack
,
E.
, and
Wendland
,
W. L.
, 1999, “
A Hybrid Coupled Finite-Boundary Element Method in Elasticity
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
173
, pp.
287
316
.
102.
Jin
,
W. G.
,
Cheung
,
Y. K.
, and
Zienkiewicz
,
O. C.
, 1990, “
Application of Trefftz Method in Plane Elasticity
,”
Int. J. Numer. Methods Eng.
0029-5981,
30
, pp.
1147
1161
.
103.
Qin
,
Q. H.
, 2004, “
Dual Variational Formulation for Trefftz Finite Element Method of Elastic Materials
,”
Mech. Res. Commun.
0093-6413,
31
, pp.
321
330
.
104.
Kompis
,
V.
,
Konkol
,
F.
, and
Vasko
,
M.
, 2001, “
Trefftz-Polynomial Reciprocity Based FE Formulations
,”
Comput. Assist. Mech. Eng. Sci.
,
8
, pp.
385
395
.
105.
Kompis
,
V.
,
Pavol
,
N.
, and
Mariam
,
H.
, 2002, “
Finite Displacements in Reciprocity-Based FE Formulation
,”
Comput. Assist. Mech. Eng. Sci.
,
9
, pp.
469
480
.
106.
Sladek
,
J.
, and
Sladek
,
V.
, 2002, “
A Trefftz Function Approximation in Local Boundary Integral Equations
,”
Comput. Mech.
0178-7675,
28
, pp.
212
219
.
107.
Sladek
,
J.
,
Sladek
,
V.
,
Kompis
,
V.
, and
Van Keer
,
R.
, 2000, “
Application of Multi-Region Trefftz Method to Elasticity
,”
Comput. Model. Eng. Sci.
1526-1492,
1
, pp.
1
8
.
108.
Jin
,
W. G.
,
Cheung
,
Y. K.
, and
Zienkiewicz
,
O. C.
, 1993, “
Trefftz Method for Kirchhoff Plate Bending Problems
,”
Int. J. Numer. Methods Eng.
0029-5981,
36
, pp.
765
781
.
109.
Jirousek
,
J.
,
Zieliński
,
A. P.
, and
Wróblewski
,
A.
2001, “
T-Element Analysis of Plates on Unilateral Elastic Winkler-Type Foundation
,”
Computer Assisted Mech. Eng. Sci.
,
8
, pp.
343
358
.
110.
Venkatesh
,
A.
and
Jirousek
,
J.
, 1987, “
An Improved 9 DOF Hybrid-Trefftz Triangular Element for Plate Bending
,”
Eng. Comput.
0177-0667,
4
, pp.
207
222
.
111.
Brink
,
U.
,
Kkreienmeyer
,
M.
,
Peters
,
K.
, and
Stein
,
E.
, 1997, “
Aspects of Trefftz Method in BEM and FEM and Their Coupling
,”
Comput. Assist. Mech. Eng. Sci.
,
4
, pp.
327
344
.
112.
Chang
,
J. R.
,
Liu
,
R. F.
,
Yeih
,
W. C.
, and
Kuo
,
S. R.
, 2002, “
Applications of the Direct Trefftz Boundary Element Method to the Free-Vibration Problem of a Membrane
,”
J. Acoust. Soc. Am.
0001-4966,
112
, pp.
518
527
.
113.
Freitas
,
J. A. T.
, 2002, “
Mixed Finite Element Formulation for the Solution of Parabolic Problems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
191
, pp.
3425
3457
.
114.
Gyimesi
,
M.
,
Wang
,
J. S.
, and
Ostergaard
,
D.
, 2001, “
Hybrid p-Element and Trefftz Method for Capacitance Computation
,”
IEEE Trans. Magn.
0018-9464,
37
, pp.
3680
3683
.
115.
He
,
J. H.
, 2002, “
Generalized Variational Principles for Thermopiezoelectricity
,”
Arch. Appl. Mech.
0939-1533,
72
, pp.
248
256
.
116.
Jirousek
,
J.
, and
Venkatesh
,
A.
, 1990, “
A New FE Approach for Adaptive Reliability Assurance
,”
Comput. Struct.
0045-7949,
37
, pp.
217
230
.
117.
Karaś
,
M.
, and
Zielinski
,
A. P.
, 2000, “
Parametric Structural Shape Optimization Using the Global Trefftz Approach
,”
Theor Appl. Mech.
0285-6042,
38
, pp.
285
296
.
118.
Kompis
,
V.
, and
Jakubovicova
,
L.
, 2000, “
Errors in Modeling High Order Gradient Fields Using Reciprocity Based FEM
,”
Int. J. Eng. Model.
,
13
, pp.
27
34
.
119.
Olegovich
,
Y.
, 2002, “
Trefftz Finite Elements for Electromagnetics
,”
IEEE Trans. Microwave Theory Tech.
0018-9480,
50
, pp.
1328
1339
.
120.
Onuki
,
T.
,
Wakao
,
S.
,
Kuwahara
,
T.
, and
Im
,
J. W.
, 1997, “
Hybrid Trefftz and Finite Element Method Applied to Magnetic Field Analysis for Rotating Machines
,”
IEEE Trans. Magn.
0018-9464,
33
, pp.
2014
2017
.
121.
Reutskiy
,
S.
, 2002, “
A Boundary Method of Trefftz Type With Approximate Trial Functions
,”
Eng. Anal. Boundary Elem.
0955-7997,
26
, pp.
341
353
.
122.
Szybiński
,
B.
,
Wróblewski
,
A.
,
Zieliński
,
A. P.
, 2001, “
General Strategy of h‐p Adaptive Solutions in Structural Trefftz-Type Element Analysis
,”
Comput. Assist. Mech. Eng. Sci.
,
8
, pp.
469
477
.
123.
Zieliński
,
A. P.
, and
Herrera
,
I.
, 1987, “
Trefftz Method: Fitting Boundary Conditions
,”
Int. J. Numer. Methods Eng.
0029-5981,
24
, pp.
871
891
.
124.
Zieliński
,
A. P.
,
Sanecki
,
H.
, and
Karaś
,
M.
, 2001, “
Effectiveness of the Trefftz Method in Different Engineering Optimization Procedures
,”
Comput. Assist. Mech. Eng. Sci.
,
8
, pp.
479
493
.
125.
Colton
,
D. L.
, 1976,
Partial Differential Equations in the Complex Domain
,
Pitman
, London.
126.
Henrici
,
P.
, 1960, “
Complete Systems of Solutions for a Class of Singular Elliptic Partial Differential Equations
,
Boundary problems in differential equations
,
R. E.
Langer
, ed.,
University of Wisconsin Press
, Madison.
127.
Herrera
,
I.
, 1984,
Boundary Method: An Algebraic Theory
,
Pitman
, Boston.
128.
Sánchez
,
S. F. J.
,
Herrera
,
I.
, and
Avilés
,
J.
, 1982,
A Boundary Method for Elastic Wave Diffraction. Application to Scattering of SH-Waves by Surface Irregularities
,
Bull. Seismol. Soc. Am.
0037-1106
72
,
473
-
490
.
129.
Fung
,
Y. C.
, 1965,
Foundations of Solid Mechanics
,
Prentice-Hall
, Englewood Cliffs, NJ.
130.
Love
,
A. E. H.
, 1944,
A Treatise on the Mathematical Theory of Elasticity
, Dover, New York.
131.
Malvern
,
L. E.
, 1969,
Introduction to the Mechanics of a Continuous Medium
,
Prentice-Hall
, Englewood Cliffs, NJ.
132.
Muskhelishvili
,
N. I.
, 1953,
Some Basic Problems of the Mathematical Theory of Elasticity
,
Noordhoff
, Groningen, Holland.
133.
Sternberg
,
E.
, 1960, “
On Some Recent Developments in the Linear Theory of Elasticity
,”
Proc. 1st Symp. on Naval Structural Mechanics
,
J. N.
Goodier
and
N. J.
Hoff
, eds.,
Pergamon Press
, New York.
134.
Williams
,
M. L.
, 1952, “
Stress Singularities Resulting From Various Boundary Conditions in Angular Corners of Plates in Extension
,”
J. Appl. Mech.
0021-8936,
19
, pp.
526
528
.
135.
Lin
,
K. Y.
, and
Tong
,
P.
, 1980, “
Singular Finite Elements for the Fracture Analysis of V-Notched Plate
,”
Int. J. Numer. Methods Eng.
0029-5981,
15
, pp.
1343
1354
.
136.
Xu
,
Z.
, 1992, “
A Thick-Thin Triangular Plate Element
,”
Int. J. Numer. Methods Eng.
0029-5981,
33
, pp.
963
973
.
137.
Aminpour
,
M. A.
, 1992, “
Direct Formulation of a Hybrid 4-Node Shell Element With Drilling Degrees of Freedom
,”
Int. J. Numer. Methods Eng.
0029-5981,
35
, pp.
997
1013
.
138.
Ibrahimbergovic
,
A.
, 1993, “
Quadrilateral Finite Elements for Analysis of Thick and Thin Plates
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
110
, pp.
195
209
.
139.
Taylor
,
R. L.
, and
Auricchio
,
F. A.
, 1993, “
Linked Interpolation for Reissner-Mindlin Plate Elements. Part II. A Simple Triangle
,”
Int. J. Numer. Methods Eng.
0029-5981,
36
, pp.
3057
3066
.
140.
Zienkiewicz
,
O. C.
,
Xu
,
Z.
,
Zeng
,
L. F.
,
Samuelson
,
A.
, and
Wiberg
,
N. E.
, 1993, “
Linked Interpolation for Reissner-Mindlin Plate Elements. Part I. A Simple Quadrilateral
,”
Int. J. Numer. Methods Eng.
0029-5981,
36
, pp.
3043
3056
.
141.
Mindlin
,
R. D.
, 1951, “
Influence of Rotatory Inertia and Shear on Flexural Motion of Isotropic Elastic Plates
,”
J. Appl. Mech.
0021-8936,
18
, pp.
31
38
.
142.
Reissner
,
E.
, 1945, “
The Effect of Shear Deformation on the Bending of Elastic Plates
,”
J. Appl. Mech.
0021-8936,
12
, pp.
69
76
.
143.
Hu
,
H. C.
, 1963, “
On Some Problems of the Antisymmetrical Small Deflection of Isotropic Sandwich Plate
,”
Acta Mech. Sin.
0459-1879
6
, pp.
53
60
(in Chinese).
144.
Reismann
,
H.
, 1988,
Elastic Plates: Theory and Applications
,
Wiley
, New York.
145.
Qin
,
Q. H.
, 1998, “
Nonlinear Analysis of Plate Bending by Boundary Element Method
,”
Plate Bending Analysis With Boundary Elements
,
M. H.
Aliabadi
, ed.,
Computational Mechanics Publications
, Southampton, Chap. 8.
146.
Qin
,
Q. H.
, and
Huang
,
Y. Y.
, 1990, “
BEM of Postbuckling Analysis of Thin Plates
,”
Appl. Math. Model.
0307-904X,
14
, pp.
544
548
.
147.
Qin
,
Q. H.
, 1993, “
Nonlinear Analysis of Reissner Plates on an Elastic Foundation by the BEM
,”
Int. J. Solids Struct.
0020-7683,
30
, pp.
3101
3111
.
148.
Argyris
,
J. H.
, and
Lochner
,
N.
, 1972, “
On the Application of SHEBA Shell Element
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
1
, pp.
317
347
.
149.
Wang
,
D. W.
,
Katz
,
I. N.
, and
Szabo
,
B. A.
, 1984, “
h- and p-Version Finite Element Analysis of Rhombic Plate
,”
Int. J. Numer. Methods Eng.
0029-5981,
20
, pp.
1399
1405
.
150.
Morley
,
L. S. D.
, 1963,
Skew Plates and Structures
,
Pergamon Press
, London.
151.
Smaill
,
J. S.
, 1991, “
Large Deflection Response of Annular Plates on Pasternak Foundations
,”
Int. J. Solids Struct.
0020-7683,
27
, pp.
1073
1084
.
You do not currently have access to this content.