Ring origami has emerged as a robust strategy for designing foldable and deployable structures due to its impressive packing abilities achieved from the snap-folding mechanism. In general, polygonal rings with rationally designed geometric parameters can fold into compacted three-loop configurations with curved segments, which result from the internal bending moment in the folded state. Inspired by the internal bending moment-induced curvature in the folded state, we explore how this curvature can be tuned by introducing initial natural curvature to the segments of the polygonal rings in their deployed stress-free state, and study how this initial curvature affects their folded configurations. Taking a clue from straight-segmented polygonal rings that fold into overlapping curved loops, we find it is possible to reverse the process by introducing curvature into the ring segments in the stress-free initial state such that the rings fold into a straight-line looped pattern with “zero” area. This realizes extreme packing. In this work, by a combination of experimental observation, finite element analysis, and theoretical modeling, we systematically study the effect of segment curvature on folding behavior, folded configurations, and packing of curved ring origami with different geometries. It is anticipated that curved ring origami can open a new avenue for the design of foldable and deployable structures with simple folded configurations and high packing efficiency.

This content is only available via PDF.
You do not currently have access to this content.