Abstract

To address the issue that the engineering application of conventional auxetic honeycomb metamaterials (AHMs) is limited by poor support performance, a novel multi-deformation mode honeycomb (MDMH) is proposed through the design of the internal contact behavior and deformation compatibility. A finite element (FE) numerical model is established to investigate the in-plane mechanical properties of the MDMH under quasi-static and dynamic compression. The static contact deformation modes in different compression phases are compared to reveal the stress transformation mechanism, and the stress fluctuations under dynamic impact are explained from the perspective of the stepwise contact and inertial effect. Based on the local instability analysis, three improved MDMHs with different reinforced ribs are developed to enhance the configuration stability. The in-plane mechanical properties of improved MDMHs are explored to verify the effectiveness of the design for stability enhancement. Moreover, the effects of wall thickness and configuration angle on the stress–strain characteristics are systematically discussed. The results indicate that the static stiffness of the MDMH is significantly enhanced when the deformation mode transformation triggered by the designed internal contact is produced. The stress characteristics of the MDMH are sensitive to the impact velocity due to the inertia effect. The configuration stability enhancement design with attached reinforced ribs effectively improves the ultimate support performance and energy absorption capacity. Therefore, this work provides an innovative strategy for enhancing the mechanical properties of AHMs by improving the contact behavior and configurational stability under compression deformation.

References

1.
Krushynska
,
A. O.
,
Torrent
,
D.
,
Aragon
,
A. M.
,
Ardito
,
R.
,
Bilal
,
O. R.
,
Bonello
,
B.
,
Bosia
,
F.
, et al
,
2023
, “
Emerging Topics in Nanophononics and Elastic, Acoustic, and Mechanical Metamaterials: an Overview
,”
Nanophotonics
,
12
(
4
), pp.
659
686
.
2.
Qi
,
J.
,
Chen
,
Z.
,
Jiang
,
P.
,
Hu
,
W.
,
Wang
,
Y.
,
Zhao
,
Z.
,
Cao
,
X.
, et al
,
2022
, “
Recent Progress in Active Mechanical Metamaterials and Construction Principles
,”
Adv. Sci.
,
9
(
1
), p.
2102662
.
3.
Yao
,
Y.
,
Ni
,
Y.
, and
He
,
L. H.
,
2021
, “
Rutile-Mimic 3D Metamaterials With Simultaneously Negative Poisson's Ratio and Negative Compressibility
,”
Mater. Des.
,
200
, p.
109440
.
4.
Fang
,
G.
,
Yuan
,
S.
,
Meng
,
S.
, and
Liang
,
J.
,
2019
, “
Graded Negative Poisson's Ratio Honeycomb Structure Design and Application
,”
J. Sandwich Struct. Mater.
,
21
(
7
), pp.
2527
2547
.
5.
Mehreganian
,
N.
,
Fallah
,
A. S.
, and
Sareh
,
P.
,
2021
, “
Structural Mechanics of Negative Stiffness Honeycomb Metamaterials
,”
ASME J. Appl. Mech.
,
88
(
5
), p.
051006
.
6.
Lin
,
Q.
,
Zhou
,
J.
,
Wang
,
K.
,
Xu
,
D.
,
Wen
,
G.
, and
Wang
,
Q.
,
2023
, “
Three-Dimensional Quasi-Zero-Stiffness Metamaterial for Low-Frequency and Wide Complete Band Gap
,”
Compos. Struct.
,
307
, p.
116656
.
7.
Zhang
,
J.
,
Huang
,
H.
,
Liu
,
G.
,
Zong
,
H.
, and
Zhang
,
C.
,
2021
, “
Stiffness and Energy Absorption of Additive Manufactured Hybrid Lattice Structures
,”
Virtual Phys. Prototyp.
,
16
(
4
), pp.
428
443
.
8.
Ma
,
J.
,
Jiang
,
X.
, and
Chen
,
Y.
,
2022
, “
A 3D Modular Meta-Structure With Continuous Mechanism Motion and Bistability
,”
Extreme Mech. Lett.
,
51
, p.
101584
.
9.
Contreras
,
N.
,
Zhang
,
X.
,
Hao
,
H.
, and
Hernández
,
F.
,
2024
, “
Application of Elastic Metamaterials/Meta-Structures in Civil Engineering: A Review
,”
Compos. Struct.
,
327
, p.
117663
.
10.
Li
,
Z.
,
Zhai
,
W.
,
Li
,
X.
,
Yu
,
X.
,
Guo
,
Z.
, and
Wang
,
Z.
,
2022
, “
Additively Manufactured Dual-Functional Metamaterials With Customisable Mechanical and Sound-Absorbing Properties
,”
Virtual Phys. Prototyp.
,
17
(
4
), pp.
864
880
.
11.
Li
,
X.
,
Xu
,
Y.
,
Liu
,
J.
,
Pan
,
G.
, and
Shi
,
Z.
,
2025
, “
Dynamic Modelling of a Floating Spline-Coupling Shaft System With Parallel Misalignment and Tooth Backlash
,”
Mech. Syst. Signal Process
,
226
, p.
112363
.
12.
Li
,
X.
,
Xu
,
Y.
,
Liu
,
J.
,
Zhang
,
Y.
,
Liu
,
J.
,
Pan
,
G.
, and
Shi
,
Z.
,
2024
, “
Vibration Analysis of the Propulsion Shaft System Considering Dynamic Misalignment in the Outer Ring
,”
J. Sound Vib.
,
589
, p.
118612
.
13.
Guo
,
M. F.
,
Yang
,
H.
,
Zhou
,
Y. M.
, and
Ma
,
L.
,
2021
, “
Mechanical Properties of 3D Hybrid Double Arrow-Head Structure With Tunable Poisson's Ratio
,”
Aerosp. Sci. Technol.
,
119
, p.
107177
.
14.
Ye
,
W.
,
Cheng
,
Y.
,
Dou
,
H.
,
Zhang
,
D.
,
Yang
,
F.
,
Li
,
Z.
, and
Cai
,
W.
,
2023
, “
Low-Velocity Impact Response and Compression Behaviour After the Impact of 3D-Printed CCFR Self-Sensing Honeycomb Structures
,”
Composites, Part B
,
266
, p.
110992
.
15.
Vitalis
,
T.
,
Gross
,
A.
, and
Gerasimidis
,
S.
,
2024
, “
Mechanical Response and Failure Modes of Three-Dimensional Auxetic Re-Entrant LPBF-Manufactured Steel Truss Lattice Materials
,”
ASME J. Appl. Mech.
,
91
(
9
), p.
091007
.
16.
Chen
,
G.
,
Zhang
,
P.
,
Deng
,
N.
,
Cai
,
S.
,
Cheng
,
Y.
, and
Liu
,
J.
,
2022
, “
Paper Tube-Guided Blast Response of Sandwich Panels With Auxetic Re-Entrant and Regular Hexagonal Honeycomb Cores—An Experimental Study
,”
Eng. Struct.
,
253
, p.
113790
.
17.
Ni
,
H.
,
Liu
,
J.
,
Liu
,
D.
,
Cao
,
H.
, and
Pan
,
G.
,
2025
, “
A Novel Honeycomb Sandwich Cylindrical Shell With Dual Deformation Mode for Circumferential Vibration Isolation and Enhanced Stiffness
,”
Mech. Syst. Signal Process
,
226
, p.
112359
.
18.
Zhou
,
Y.
,
Luo
,
Y.
,
Gao
,
D.
,
Yu
,
C.
,
Ren
,
X.
, and
Zhang
,
C.
,
2022
, “
In-Plane Elastic Properties of a Novel Re-Entrant Auxetic Honeycomb With Zigzag Inclined Ligaments
,”
Eng. Struct.
,
268
, p.
114788
.
19.
Zhang
,
Y.
,
Ren
,
X.
,
Jiang
,
W.
,
Han
,
D.
,
Yu Zhang
,
X.
,
Pan
,
Y.
, and
Min Xie
,
Y.
,
2022
, “
In-Plane Compressive Properties of Assembled Auxetic Chiral Honeycomb Composed of Slotted Wave Plate
,”
Mater. Des.
,
221
, p.
110956
.
20.
Ebrahimi
,
M. S.
,
Hashemi
,
R.
, and
Etemadi
,
E.
,
2022
, “
In-Plane Energy Absorption Characteristics and Mechanical Properties of 3D Printed Novel Hybrid Cellular Structures
,”
J. Mater. Res. Technol.
,
20
, pp.
3616
3632
.
21.
Ni
,
H.
,
Liu
,
J.
,
Guo
,
L.
,
Zeng
,
T.
,
Pan
,
G.
,
2024
, “
A Novel Star-4 Honeycomb With the Inclined Ligaments for Enhanced Tunability of Wave Propagation Behaviors
,”
Compos. Struct.
,
346
, p.
118405
.
22.
Yang
,
C.
,
Vora
,
H. D.
, and
Chang
,
Y.
,
2018
, “
Behavior of Auxetic Structures Under Compression and Impact Forces
,”
Smart Mater. Struct.
,
27
(
2
), p.
025012
.
23.
Xiao
,
D.
,
Kang
,
X.
,
Li
,
Y.
,
Wu
,
W.
,
Lu
,
J.
,
Zhao
,
G.
, and
Fang
,
D.
,
2019
, “
Insight Into the Negative Poisson's Ratio Effect of Metallic Auxetic Reentrant Honeycomb Under Dynamic Compression
,”
Mater. Sci. Eng., A
,
763
, p.
138151
.
24.
Chen
,
Z.
,
Wu
,
X.
,
Xie
,
Y. M.
,
Wang
,
Z.
, and
Zhou
,
S.
,
2020
, “
Re-Entrant Auxetic Lattices With Enhanced Stiffness: A Numerical Study
,”
Int. J. Mech. Sci.
,
178
, p.
105619
.
25.
Lu
,
Z. X.
,
Li
,
X.
,
Yang
,
Z. Y.
, and
Xie
,
F.
,
2016
, “
Novel Structure With Negative Poisson's Ratio and Enhanced Young's Modulus
,”
Compos. Struct.
,
138
, pp.
243
252
.
26.
Li
,
L.
,
Yang
,
F.
,
Zhang
,
S.
,
Guo
,
Z.
,
Wang
,
L.
,
Ren
,
X.
, and
Zhao
,
M.
,
2023
, “
A Novel Hybrid Auxetic Honeycomb With Enhanced Load-Bearing and Energy Absorption Properties
,”
Eng. Struct.
,
289
, p.
116335
.
27.
Lu
,
H.
,
Wang
,
X. P.
, and
Chen
,
T. N.
,
2022
, “
Enhanced Stiffness Characteristic and Anisotropic Quasi-Static Compression Properties of a Negative Poisson's Ratio Mechanical Metamaterial
,”
Thin Walled Struct.
,
179
, p.
109757
.
28.
Meena
,
K.
, and
Singamneni
,
S.
,
2019
, “
A New Auxetic Structure With Significantly Reduced Stress Concentration Effects
,”
Mater. Des.
,
173
, p.
107779
.
29.
Alomarah
,
A.
,
Masood
,
S. H.
, and
Ruan
,
D.
,
2022
, “
Metamaterials With Enhanced Mechanical Properties and Tuneable Poisson's Ratio
,”
Smart Mater. Struct.
,
31
(
2
), p.
025026
.
30.
Li
,
K.
,
Zhang
,
Y.
,
Hou
,
Y.
,
Su
,
L.
,
Zeng
,
G.
, and
Xu
,
X.
,
2023
, “
Mechanical Properties of Re-Entrant Anti-Chiral Auxetic Metamaterial Under the In-Plane Compression
,”
Thin Walled Struct.
,
184
, p.
110465
.
31.
Shen
,
L.
,
Wang
,
Z.
,
Wang
,
X.
, and
Wei
,
K.
,
2021
, “
Negative Poisson's Ratio and Effective Young's Modulus of a Vertex-Based Hierarchical Re-Entrant Honeycomb Structure
,”
Int. J. Mech. Sci.
,
206
, p.
106611
.
32.
Zhou
,
Y.
,
Pan
,
Y.
,
Gao
,
Q.
, and
Sun
,
B.
,
2023
, “
In-Plane Quasi-Static Crushing Behaviors of a Novel Reentrant Combined-Wall Honeycomb
,”
ASME J. Appl. Mech.
,
90
(
5
), p.
051002
.
33.
Acharya
,
A.
,
DasGupta
,
A.
, and
Jain
,
A.
,
2024
, “
Design and Study of Novel Nested Auxetic Lattices With Tunable and Enhanced in-Plane Elastic Properties
,”
Int. J. Solids Struct.
,
293
, p.
112749
.
34.
Zhang
,
X.
,
Hao
,
H.
,
Tian
,
R.
,
Xue
,
Q.
,
Guan
,
H.
, and
Yang
,
X.
,
2022
, “
Quasi-Static Compression and Dynamic Crushing Behaviors of Novel Hybrid Re-Entrant Auxetic Metamaterials With Enhanced Energy-Absorption
,”
Compos. Struct.
,
288
, p.
115399
.
35.
Wang
,
H.
,
Lu
,
Z.
,
Yang
,
Z.
, and
Li
,
X.
,
2019
, “
A Novel Re-Entrant Auxetic Honeycomb With Enhanced In-Plane Impact Resistance
,”
Compos. Struct.
,
208
, pp.
758
770
.
36.
Wei
,
L.
,
Zhao
,
X.
,
Yu
,
Q.
, and
Zhu
,
G.
,
2020
, “
A Novel Star Auxetic Honeycomb With Enhanced in-Plane Crushing Strength
,”
Thin Walled Struct.
,
149
, p.
106623
.
37.
Wei
,
L.
,
Zhao
,
X.
,
Yu
,
Q.
,
Zhang
,
W.
, and
Zhu
,
G.
,
2021
, “
In-Plane Compression Behaviors of the Auxetic Star Honeycomb: Experimental and Numerical Simulation
,”
Aerosp. Sci. Technol.
,
115
, p.
106797
.
38.
Zhang
,
X. C.
,
An
,
C. C.
,
Shen
,
Z. F.
,
Wu
,
H.-X.
,
Yang
,
W.-G.
, and
Bai
,
J.-P.
,
2020
, “
Dynamic Crushing Responses of Bio-Inspired Re-Entrant Auxetic Honeycombs Under In-Plane Impact Loading
,”
Mater. Today Commun.
,
23
, p.
100918
.
39.
Li
,
K.
,
Gao
,
X. L.
, and
Subhash
,
G.
,
2005
, “
Effects of Cell Shape and Cell Wall Thickness Variations on the Elastic Properties of Two-Dimensional Cellular Solids
,”
Int. J. Solids Struct.
,
42
(
5–6
), pp.
1777
1795
.
40.
Tekoglu
,
C.
,
Gibson
,
L. J.
,
Pardoen
,
T.
, and
Onck
,
P. R.
,
2011
, “
Size Effects in Foams: Experiments and Modeling
,”
Prog. Mater. Sci.
,
56
(
2
), pp.
109
138
.
41.
Liu
,
J. Y.
, and
Liu
,
H. T.
,
2022
, “
Energy Absorption Characteristics and Stability of Novel Bionic Negative Poisson's Ratio Honeycomb Under Oblique Compression
,”
Eng. Struct.
,
267
, p.
114682
.
You do not currently have access to this content.