Abstract

Disordered fibrous matrices, formed by the random assembly of fibers, provide the structural framework for many biological systems and biomaterials. Applied deformation modifies the alignment and stress states of constituent fibers, tuning the nonlinear elastic response of these materials. While it is generally presumed that fibers return to their original configurations after deformation is released, except when neighboring fibers coalesce or individual fibers yield, this reversal process remains largely unexplored. The intricate geometry of these matrices leaves an incomplete understanding of whether releasing deformation fully restores the matrix or introduces new microstructural deformation mechanisms. To address this gap, we investigated the evolution of matrix microstructures during the release of an applied deformation. Numerical simulations were performed on quasi-two-dimensional matrices of random fibers under localized tension, with fibers modeled as beams in finite element analysis. After tension release, the matrix exhibited permanent mechanical remodeling, with greater remodeling occurring at higher magnitudes of applied tension, indicative of the matrix preserving its loading history as mechanical memory. This response was surprising; it occurred despite the absence of explicit plasticity mechanisms, such as activation of interfiber cohesion or fiber yielding. We attributed the observed remodeling to the gradient in fiber alignment that developed within the matrix microstructure under applied tension, driving the subsequent changes in matrix properties during the release of applied tension. Therefore, random fibrous matrices tend to retain mechanical memory due to their intricate geometry.

References

1.
Janmey
,
P. A.
,
1998
, “
The Cytoskeleton and Cell Signaling: Component Localization and Mechanical Coupling
,”
Physiol. Rev.
,
78
(
3
), pp.
763
781
.
2.
Bausch
,
A.
, and
Kroy
,
K.
,
2006
, “
A Bottom-Up Approach to Cell Mechanics
,”
Nat. Phys.
,
2
(
4
), pp.
231
238
.
3.
Alberts
,
B.
,
Johnson
,
A.
,
Lewis
,
J.
,
Raff
,
M.
,
Roberts
,
K.
, and
Walter
,
P.
,
2007
,
Molecular Biology of the Cell
,
Taylor & Francis Group
,
New York
.
4.
Muiznieks
,
L. D.
, and
Keeley
,
F. W.
,
2013
, “
Molecular Assembly and Mechanical Properties of the Extracellular Matrix: A Fibrous Protein Perspective
,”
BBA-Mol. Basis Dis.
,
1832
(
7
), pp.
866
875
.
5.
Klemm
,
D.
,
Heublein
,
B.
,
Fink
,
H.-P.
, and
Bohn
,
A.
,
2005
, “
Cellulose: Fascinating Biopolymer and Sustainable Raw Material
,”
Angew. Chem. Int. Ed.
,
44
(
22
), pp.
3358
3393
.
6.
Islam
,
M. R.
,
Tudryn
,
G.
,
Bucinell
,
R.
,
Schadler
,
L.
, and
Picu
,
R.
,
2017
, “
Morphology and Mechanics of Fungal Mycelium
,”
Sci. Rep.
,
7
(
1
), p.
13070
.
7.
Vepari
,
C.
, and
Kaplan
,
D. L.
,
2007
, “
Silk as a Biomaterial
,”
Prog. Polym. Sci.
,
32
(
8–9
), pp.
991
1007
.
8.
Baláž
,
M.
,
2014
, “
Eggshell Membrane Biomaterial as a Platform for Applications in Materials Science
,”
Acta Biomater.
,
10
(
9
), pp.
3827
3843
.
9.
Licup
,
A. J.
,
Münster
,
S.
,
Sharma
,
A.
,
Sheinman
,
M.
,
Jawerth
,
L. M.
,
Fabry
,
B.
,
Weitz
,
D. A.
, and
MacKintosh
,
F. C.
,
2015
, “
Stress Controls the Mechanics of Collagen Networks
,”
Proc. Natl. Acad. Sci. USA
,
112
(
31
), pp.
9573
9578
.
10.
Vahabi
,
M.
,
Sharma
,
A.
,
Licup
,
A. J.
,
Van Oosten
,
A. S.
,
Galie
,
P. A.
,
Janmey
,
P. A.
, and
MacKintosh
,
F. C.
,
2016
, “
Elasticity of Fibrous Networks Under Uniaxial Prestress
,”
Soft Matter
,
12
(
22
), pp.
5050
5060
.
11.
Picu
,
R.
,
Deogekar
,
S.
, and
Islam
,
M.
,
2018
, “
Poisson’s Contraction and Fiber Kinematics in Tissue: Insight From Collagen Network Simulations
,”
ASME J. Biomech. Eng.
,
140
(
2
), p.
021002
.
12.
Liang
,
L.
,
Jones
,
C.
,
Chen
,
S.
,
Sun
,
B.
, and
Jiao
,
Y.
,
2016
, “
Heterogeneous Force Network in 3D Cellularized Collagen Networks
,”
Phys. Biol.
,
13
(
6
), p.
066001
.
13.
Ronceray
,
P.
,
Broedersz
,
C. P.
, and
Lenz
,
M.
,
2016
, “
Fiber Networks Amplify Active Stress
,”
Proc. Natl. Acad. Sci. USA
,
113
(
11
), pp.
2827
2832
.
14.
Mann
,
A.
,
Sopher
,
R. S.
,
Goren
,
S.
,
Shelah
,
O.
,
Tchaicheeyan
,
O.
, and
Lesman
,
A.
,
2019
, “
Force Chains in Cell–Cell Mechanical Communication
,”
J. R. Soc. Interface
,
16
(
159
), p.
20190348
.
15.
Sarkar
,
M.
, and
Notbohm
,
J.
,
2022
, “
Evolution of Force Chains Explains the Onset of Strain Stiffening in Fiber Networks
,”
ASME J. Appl. Mech.
,
89
(
11
), p.
111008
.
16.
Burkel
,
B.
, and
Notbohm
,
J.
,
2017
, “
Mechanical Response of Collagen Networks to Nonuniform Microscale Loads
,”
Soft Matter
,
13
(
34
), pp.
5749
5758
.
17.
Grimmer
,
P.
, and
Notbohm
,
J.
,
2018
, “
Displacement Propagation in Fibrous Networks Due to Local Contraction
,”
ASME J. Biomech. Eng.
,
140
(
4
), p.
041011
.
18.
Onck
,
P.
,
Koeman
,
T.
,
Van Dillen
,
T.
, and
van der Giessen
,
E.
,
2005
, “
Alternative Explanation of Stiffening in Cross-Linked Semiflexible Networks
,”
Phys. Rev. Lett.
,
95
(
17
), p.
178102
.
19.
Storm
,
C.
,
Pastore
,
J. J.
,
MacKintosh
,
F. C.
,
Lubensky
,
T. C.
, and
Janmey
,
P. A.
,
2005
, “
Nonlinear Elasticity in Biological Gels
,”
Nature
,
435
(
7039
), pp.
191
194
.
20.
Roeder
,
B. A.
,
Kokini
,
K.
,
Sturgis
,
J. E.
,
Robinson
,
J. P.
, and
Voytik-Harbin
,
S. L.
,
2002
, “
Tensile Mechanical Properties of Three-Dimensional Type I Collagen Extracellular Matrices With Varied Microstructure
,”
ASME J. Biomech. Eng.
,
124
(
2
), pp.
214
222
.
21.
Janmey
,
P. A.
,
McCormick
,
M. E.
,
Rammensee
,
S.
,
Leight
,
J. L.
,
Georges
,
P. C.
, and
MacKintosh
,
F. C.
,
2007
, “
Negative Normal Stress in Semiflexible Biopolymer Gels
,”
Nat. Mater
,
6
(
1
), pp.
48
51
.
22.
Brown
,
A. E.
,
Litvinov
,
R. I.
,
Discher
,
D. E.
,
Purohit
,
P. K.
, and
Weisel
,
J. W.
,
2009
, “
Multiscale Mechanics of Fibrin Polymer: Gel Stretching With Protein Unfolding and Loss of Water
,”
Science
,
325
(
5941
), pp.
741
744
.
23.
Vader
,
D.
,
Kabla
,
A.
,
Weitz
,
D.
, and
Mahadevan
,
L.
,
2009
, “
Strain-Induced Alignment in Collagen Gels
,”
PLoS One
,
4
(
6
), p.
e5902
.
24.
Münster
,
S.
,
Jawerth
,
L. M.
,
Leslie
,
B. A.
,
Weitz
,
J. I.
,
Fabry
,
B.
, and
Weitz
,
D. A.
,
2013
, “
Strain History Dependence of the Nonlinear Stress Response of Fibrin and Collagen Networks
,”
Proc. Natl. Acad. Sci. USA
,
110
(
30
), pp.
12197
12202
.
25.
Kim
,
O. V.
,
Litvinov
,
R. I.
,
Weisel
,
J. W.
, and
Alber
,
M. S.
,
2014
, “
Structural Basis for the Nonlinear Mechanics of Fibrin Networks Under Compression
,”
Biomaterials
,
35
(
25
), pp.
6739
6749
.
26.
Sarkar
,
M.
,
Burkel
,
B. M.
,
Ponik
,
S. M.
, and
Notbohm
,
J.
,
2024
, “
Unexpected Softening of a Fibrous Matrix by Contracting Inclusions
,”
Acta Biomater.
,
177
, pp.
253
264
.
27.
Zakharov
,
A.
,
Awan
,
M.
,
Gopinath
,
A.
,
Lee
,
S.-J. J.
,
Ramasubramanian
,
A. K.
, and
Dasbiswas
,
K.
,
2024
, “
Clots Reveal Anomalous Elastic Behavior of Fiber Networks
,”
Sci. Adv.
,
10
(
2
), p.
eadh1265
.
28.
Grekas
,
G.
,
Proestaki
,
M.
,
Rosakis
,
P.
,
Notbohm
,
J.
,
Makridakis
,
C.
, and
Ravichandran
,
G.
,
2021
, “
Cells Exploit a Phase Transition to Mechanically Remodel the Fibrous Extracellular Matrix
,”
J. R. Soc. Interface
,
18
(
175
), p.
20200823
.
29.
Sopher
,
R. S.
,
Tokash
,
H.
,
Natan
,
S.
,
Sharabi
,
M.
,
Shelah
,
O.
,
Tchaicheeyan
,
O.
, and
Lesman
,
A.
,
2018
, “
Nonlinear Elasticity of the ECM Fibers Facilitates Efficient Intercellular Communication
,”
Biophys. J.
,
115
(
7
), pp.
1357
1370
.
30.
Ban
,
E.
,
Wang
,
H.
,
Franklin
,
J. M.
,
Liphardt
,
J. T.
,
Janmey
,
P. A.
, and
Shenoy
,
V. B.
,
2019
, “
Strong Triaxial Coupling and Anomalous Poisson Effect in Collagen Networks
,”
Proc. Natl. Acad. Sci. USA
,
116
(
14
), pp.
6790
6799
.
31.
Humphries
,
D.
,
Grogan
,
J.
, and
Gaffney
,
E.
,
2017
, “
Mechanical Cell–Cell Communication in Fibrous Networks: The Importance of Network Geometry
,”
Bull. Math. Biol.
,
79
(
3
), pp.
498
524
.
32.
Favata
,
A.
,
Rodella
,
A.
, and
Vidoli
,
S.
,
2022
, “
An Internal Variable Model for Plastic Remodeling in Fibrous Materials
,”
Eur. J. Mech. A Solid
,
96
, p.
104718
.
33.
Favata
,
A.
,
Rodella
,
A.
, and
Vidoli
,
S.
,
2024
, “
Emerging Anisotropy and Tethering With Memory Effects in Fibrous Materials
,”
Mech. Mater.
,
190
, p.
104928
.
34.
Nicolas
,
A.
,
Ferrero
,
E. E.
,
Martens
,
K.
, and
Barrat
,
J.-L.
,
2018
, “
Deformation and Flow of Amorphous Solids: Insights From Elastoplastic Models
,”
Rev. Mod. Phys.
,
90
(
4
), p.
045006
.
35.
Guyon
,
E.
,
Roux
,
S.
,
Hansen
,
A.
,
Bideau
,
D.
,
Troadec
,
J.-P.
, and
Crapo
,
H.
,
1990
, “
Non-local and Non-linear Problems in the Mechanics of Disordered Systems: Application to Granular Media and Rigidity Problems
,”
Rep. Prog. Phys.
,
53
(
4
), p.
373
.
36.
Roux
,
J.-N.
,
2000
, “
Geometric Origin of Mechanical Properties of Granular Materials
,”
Phys. Rev. E
,
61
(
6
), p.
6802
.
37.
Keim
,
N. C.
,
Paulsen
,
J. D.
,
Zeravcic
,
Z.
,
Sastry
,
S.
, and
Nagel
,
S. R.
,
2019
, “
Memory Formation in Matter
,”
Rev. Mod. Phys.
,
91
(
3
), p.
035002
.
38.
Paulsen
,
J. D.
, and
Keim
,
N. C.
,
2024
, “
Mechanical Memories in Solids, From Disorder to Design
,”
Annu. Rev. Condens. Matter Phys.
,
16
, p.
035544
.
39.
Rosakis
,
P.
,
Notbohm
,
J.
, and
Ravichandran
,
G.
,
2015
, “
A Model for Compression-Weakening Materials and the Elastic Fields Due to Contractile Cells
,”
J. Mech. Phys. Solids
,
85
, pp.
16
32
.
40.
Ruiz-Franco
,
J.
, and
van Der Gucht
,
J.
,
2022
, “
Force Transmission in Disordered Fibre Networks
,”
Front. Cell Dev. Biol.
,
10
, p.
931776
.
41.
Kim
,
J.
,
Feng
,
J.
,
Jones
,
C. A.
,
Mao
,
X.
,
Sander
,
L. M.
,
Levine
,
H.
, and
Sun
,
B.
,
2017
, “
Stress-Induced Plasticity of Dynamic Collagen Networks
,”
Nat. Commun.
,
8
(
1
), p.
842
.
42.
Ban
,
E.
,
Franklin
,
J. M.
,
Nam
,
S.
,
Smith
,
L. R.
,
Wang
,
H.
,
Wells
,
R. G.
,
Chaudhuri
,
O.
,
Liphardt
,
J. T.
, and
Shenoy
,
V. B.
,
2018
, “
Mechanisms of Plastic Deformation in Collagen Networks Induced by Cellular Forces
,”
Biophys. J.
,
114
(
2
), pp.
450
461
.
43.
Zhang
,
M.
,
Chen
,
Y.
,
Chiang
,
F.-p.
,
Gouma
,
P. I.
, and
Wang
,
L.
,
2019
, “
Modeling the Large Deformation and Microstructure Evolution of Nonwoven Polymer Fiber Networks
,”
ASME J. Appl. Mech.
,
86
(
1
), p.
011010
.
44.
Burla
,
F.
,
Dussi
,
S.
,
Martinez-Torres
,
C.
,
Tauber
,
J.
,
van der Gucht
,
J.
, and
Koenderink
,
G. H.
,
2020
, “
Connectivity and Plasticity Determine Collagen Network Fracture
,”
Proc. Natl. Acad. Sci.
,
117
(
15
), pp.
8326
8334
.
45.
Notbohm
,
J.
,
Lesman
,
A.
,
Rosakis
,
P.
,
Tirrell
,
D. A.
, and
Ravichandran
,
G.
,
2015
, “
Microbuckling of Fibrin Provides a Mechanism for Cell Mechanosensing
,”
J. R. Soc. Interface
,
12
(
108
), p.
20150320
.
46.
Lindström
,
S. B.
,
Vader
,
D. A.
,
Kulachenko
,
A.
, and
Weitz
,
D. A.
,
2010
, “
Biopolymer Network Geometries: Characterization, Regeneration, and Elastic Properties
,”
Phys. Rev. E
,
82
(
5
), p.
051905
.
47.
Lindström
,
S. B.
,
Kulachenko
,
A.
,
Jawerth
,
L. M.
, and
Vader
,
D. A.
,
2013
, “
Finite-Strain, Finite-Size Mechanics of Rigidly Cross-Linked Biopolymer Networks
,”
Soft Matter
,
9
(
30
), pp.
7302
7313
.
48.
Proestaki
,
M.
,
Burkel
,
B.
,
Galles
,
E. E.
,
Ponik
,
S. M.
, and
Notbohm
,
J.
,
2021
, “
Effect of Matrix Heterogeneity on Cell Mechanosensing
,”
Soft Matter
,
17
(
45
), pp.
10263
10273
.
49.
Goren
,
S.
,
Koren
,
Y.
,
Xu
,
X.
, and
Lesman
,
A.
,
2020
, “
Elastic Anisotropy Governs the Range of Cell-Induced Displacements
,”
Biophys. J.
,
118
(
5
), pp.
1152
1164
.
50.
Hatami-Marbini
,
H.
, and
Rohanifar
,
M.
,
2021
, “
Mechanical Response of Composite Fiber Networks Subjected to Local Contractile Deformation
,”
Int. J. Solids Struct.
,
228
, p.
111045
.
51.
Arzash
,
S.
,
Shivers
,
J. L.
,
Licup
,
A. J.
,
Sharma
,
A.
, and
MacKintosh
,
F. C.
,
2019
, “
Stress-Stabilized Subisostatic Fiber Networks in a Ropelike Limit
,”
Phys. Rev. E
,
99
(
4
), p.
042412
.
52.
Maxwell
,
J. C.
,
1864
, “
L. on the Calculation of the Equilibrium and Stiffness of Frames
,”
Lond. Edinb. Dublin Philos. Mag. J. Sci.
,
27
(
182
), pp.
294
299
.
53.
Stein
,
A. M.
,
Vader
,
D. A.
,
Jawerth
,
L. M.
,
Weitz
,
D. A.
, and
Sander
,
L. M.
,
2008
, “
An Algorithm for Extracting the Network Geometry of Three-Dimensional Collagen Gels
,”
J. Microsc-Oxford
,
232
(
3
), pp.
463
475
.
54.
Burkel
,
B.
,
Proestaki
,
M.
,
Tyznik
,
S.
, and
Notbohm
,
J.
,
2018
, “
Heterogeneity and Nonaffinity of Cell-Induced Matrix Displacements
,”
Phys. Rev. E
,
98
(
5
), p.
052410
.
55.
Feng
,
J.
,
Levine
,
H.
,
Mao
,
X.
, and
Sander
,
L. M.
,
2015
, “
Alignment and Nonlinear Elasticity in Biopolymer Gels
,”
Phys. Rev. E
,
91
(
4
), p.
042710
.
56.
Van Oosten
,
A. S.
,
Vahabi
,
M.
,
Licup
,
A. J.
,
Sharma
,
A.
,
Galie
,
P. A.
,
MacKintosh
,
F. C.
, and
Janmey
,
P. A.
,
2016
, “
Uncoupling Shear and Uniaxial Elastic Moduli of Semiflexible Biopolymer Networks: Compression-Softening and Stretch-Stiffening
,”
Sci. Rep.
,
6
, p.
19270
.
57.
Sarkar
,
M.
, and
Notbohm
,
J.
,
2023
, “
Bioinspired Fiber Networks With Tunable Mechanical Properties by Additive Manufacturing
,”
ASME J. Appl. Mech.
,
90
(
8
), p.
081010
.
58.
Islam
,
M.
, and
Picu
,
R.
,
2019
, “
Random Fiber Networks With Inclusions: The Mechanism of Reinforcement
,”
Phys. Rev. E
,
99
(
6
), p.
063001
.
59.
Islam
,
M.
, and
Picu
,
R.
,
2018
, “
Effect of Network Architecture on the Mechanical Behavior of Random Fiber Networks
,”
ASME J. Appl. Mech.
,
85
(
8
), p.
081011
.
60.
Sarkar
,
M.
, and
Notbohm
,
J.
,
2022
, “
Quantification of Errors in Applying Dic to Fiber Networks Imaged by Confocal Microscopy
,”
Exp. Mech.
,
62
(
7
), pp.
1175
1189
.
61.
Natário
,
P.
,
Silvestre
,
N.
, and
Camotim
,
D.
,
2014
, “
Web Crippling Failure Using Quasi-static Fe Models
,”
Thin Wall Struct.
,
84
, pp.
34
49
.
62.
Sharma
,
A.
,
Licup
,
A.
,
Rens
,
R.
,
Vahabi
,
M.
,
Jansen
,
K.
,
Koenderink
,
G.
, and
MacKintosh
,
F.
,
2016
, “
Strain-Driven Criticality Underlies Nonlinear Mechanics of Fibrous Networks
,”
Phys. Rev. E
,
94
(
4
), p.
042407
.
63.
Andrienko
,
D.
,
2018
, “
Introduction to Liquid Crystals
,”
J. Mol. Liq.
,
267
, pp.
520
541
.
64.
Vestal
,
B. E.
,
Carlson
,
N. E.
, and
Ghosh
,
D.
,
2021
, “
Filtering Spatial Point Patterns Using Kernel Densities
,”
Spat. Stat.
,
41
, p.
100487
.
65.
Head
,
D. A.
,
Levine
,
A. J.
, and
MacKintosh
,
F.
,
2003
, “
Deformation of Cross-Linked Semiflexible Polymer Networks
,”
Phys. Rev. Lett.
,
91
(
10
), p.
108102
.
66.
Head
,
D.
,
Levine
,
A.
, and
MacKintosh
,
F.
,
2005
, “
Mechanical Response of Semiflexible Networks to Localized Perturbations
,”
Phys. Rev. E
,
72
(
6
), p.
061914
.
67.
Chandran
,
P. L.
, and
Barocas
,
V. H.
,
2006
, “
Affine Versus Non-affine Fibril Kinematics in Collagen Networks: Theoretical Studies of Network Behavior
,”
ASME J. Biomech. Eng.
,
128
(
2
), pp.
259
270
.
68.
Hatami-Marbini
,
H.
, and
Picu
,
R.
,
2008
, “
Scaling of Nonaffine Deformation in Random Semiflexible Fiber Networks
,”
Phys. Rev. E
,
77
(
6
), p.
062103
.
69.
Parvez
,
N.
,
Merson
,
J.
, and
Picu
,
R.
,
2023
, “
Stiffening Mechanisms in Stochastic Athermal Fiber Networks
,”
Phys. Rev. E
,
108
(
4
), p.
044502
.
70.
Rudnicki
,
M. S.
,
Cirka
,
H. A.
,
Aghvami
,
M.
,
Sander
,
E. A.
,
Wen
,
Q.
, and
Billiar
,
K. L.
,
2013
, “
Nonlinear Strain Stiffening is Not Sufficient to Explain How Far Cells Can Feel on Fibrous Protein Gels
,”
Biophys. J.
,
105
(
1
), pp.
11
20
.
71.
Proestaki
,
M.
,
Ogren
,
A.
,
Burkel
,
B.
, and
Notbohm
,
J.
,
2019
, “
Modulus of Fibrous Collagen at the Length Scale of a Cell
,”
Exp. Mech.
,
59
(
9
), pp.
1323
1334
.
72.
Liu
,
C.
,
Lertthanasarn
,
J.
, and
Pham
,
M.-S.
,
2021
, “
The Origin of the Boundary Strengthening in Polycrystal-Inspired Architected Materials
,”
Nat. Commun.
,
12
(
1
), p.
4600
.
73.
Shivers
,
J. L.
,
Feng
,
J.
,
van Oosten
,
A. S.
,
Levine
,
H.
,
Janmey
,
P. A.
, and
MacKintosh
,
F. C.
,
2020
, “
Compression Stiffening of Fibrous Networks With Stiff Inclusions
,”
Proc. Natl. Acad. Sci. USA
,
117
(
35
), pp.
21037
21044
.
74.
Shahsavari
,
A.
, and
Picu
,
R.
,
2013
, “
Size Effect on Mechanical Behavior of Random Fiber Networks
,”
Int. J. Solids Struct.
,
50
(
20–21
), pp.
3332
3338
.
75.
Tyznik
,
S.
, and
Notbohm
,
J.
,
2019
, “
Length Scale Dependent Elasticity in Random Three-Dimensional Fiber Networks
,”
Mech. Mater.
,
138
, p.
103155
.
76.
Merson
,
J.
, and
Picu
,
R.
,
2020
, “
Size Effects in Random Fiber Networks Controlled by the Use of Generalized Boundary Conditions
,”
Int. J. Solids Struct.
,
206
, pp.
314
321
.
77.
Rice
,
J. R.
,
1971
, “
Inelastic Constitutive Relations for Solids: An Internal-Variable Theory and Its Application to Metal Plasticity
,”
J. Mech. Phys. Solids
,
19
(
6
), pp.
433
455
.
78.
Proestaki
,
M.
,
Sarkar
,
M.
,
Burkel
,
B. M.
,
Ponik
,
S. M.
, and
Notbohm
,
J.
,
2022
, “
Effect of Hyaluronic Acid on Microscale Deformations of Collagen Gels
,”
J. Mech. Behav. Biomed.
,
135
, p.
105465
.
79.
Doha
,
U.
,
Aydin
,
O.
,
Joy
,
M. S. H.
,
Emon
,
B.
,
Drennan
,
W.
, and
Saif
,
M. T. A.
,
2022
, “
Disorder to Order Transition in Cell-ECM Systems Mediated by Cell-Cell Collective Interactions
,”
Acta Biomater.
,
154
, pp.
290
301
.
80.
Duan
,
F.
,
Li
,
Q.
,
Jiang
,
Z.
,
Zhou
,
L.
,
Luan
,
J.
,
Shen
,
Z.
, and
Zhou
,
W.
,
2024
, “
An Order-Disorder Core-Shell Strategy for Enhanced Work-Hardening Capability and Ductility in Nanostructured Alloys
,”
Nat. Commun.
,
15
(
1
), p.
6832
.
81.
Li
,
X.
,
Lu
,
L.
,
Li
,
J.
,
Zhang
,
X.
, and
Gao
,
H.
,
2020
, “
Mechanical Properties and Deformation Mechanisms of Gradient Nanostructured Metals and Alloys
,”
Nat. Rev. Mater.
,
5
(
9
), pp.
706
723
.
82.
Wu
,
X.
,
Jiang
,
P.
,
Chen
,
L.
,
Yuan
,
F.
, and
Zhu
,
Y.
,
2021
, “Extraordinary Strain Hardening by Gradient Structure,”
Heterostructured Materials
,
X.
Wu
, and
Y.
Zhu
, eds.,
Jenny Stanford Publishing
,
New York
, pp.
53
71
.
83.
Shao
,
C.
,
Zhang
,
P.
,
Zhu
,
Y.
,
Zhang
,
Z.
,
Tian
,
Y.
, and
Zhang
,
Z.
,
2018
, “
Simultaneous Improvement of Strength and Plasticity: Additional Work-Hardening From Gradient Microstructure
,”
Acta Mater.
,
145
, pp.
413
428
.
84.
Hughes
,
D.
, and
Hansen
,
N.
,
2018
, “
The Microstructural Origin of Work Hardening Stages
,”
Acta Mater.
,
148
, pp.
374
383
.
85.
Ding
,
J.
,
Li
,
Q.
,
Li
,
J.
,
Xue
,
S.
,
Fan
,
Z.
,
Wang
,
H.
, and
Zhang
,
X.
,
2018
, “
Mechanical Behavior of Structurally Gradient Nickel Alloy
,”
Acta Mater.
,
149
, pp.
57
67
.
86.
Huang
,
J.
,
Zhang
,
J.
,
Xu
,
D.
,
Zhang
,
S.
,
Tong
,
H.
, and
Xu
,
N.
,
2023
, “
From Jammed Solids to Mechanical Metamaterials: A Brief Review
,”
Curr. Opin. Solid State Mater.
,
27
(
1
), p.
101053
.
87.
Rayneau-Kirkhope
,
D.
,
Bonfanti
,
S.
, and
Zapperi
,
S.
,
2019
, “
Density Scaling in the Mechanics of a Disordered Mechanical Meta-material
,”
Appl. Phys. Lett.
,
114
(
11
), p.
111902
.
88.
Khalid
,
M. Y.
,
Arif
,
Z. U.
,
Tariq
,
A.
,
Hossain
,
M.
,
Umer
,
R.
, and
Bodaghi
,
M.
,
2024
, “
3D Printing of Active Mechanical Metamaterials: A Critical Review
,”
Mater. Des.
,
246
, p.
113305
.
You do not currently have access to this content.