Abstract

An approach to infer mechanical properties of shape memory alloys (SMAs) from instrumented spherical indentation records of indenter tip loading force, P, versus the resultant indentation depth, h, during indentation loading and unloading is proposed. The approach is based on (i) a finite element (FE) model for describing the forward problem of determining the indentation response, i.e., the Ph curve, for a given set of SMA mechanical properties, (ii) a computationally efficient Gaussian process surrogate model to replace the costly FE one, and (iii) an iterative solution strategy, which approximates the unknown model parameters from an experimentally determined Ph record and their corresponding probability densities via a Bayesian inference framework and a Markov Chain Monte Carlo sampling strategy. The efficacy of the proposed approach is demonstrated using numerical experiments, i.e., indentation curves generated by evaluating the FE model at points in the parameter space.

References

1.
Ozbulut
,
O. E.
,
Hurlebaus
,
S.
, and
Desroches
,
R.
,
2011
, “
Seismic Response Control Using Shape Memory Alloys: A Review
,”
J. Intell. Mater. Syst. Struct.
,
22
(
14
), pp.
1531
1549
.
2.
Mohd Jani
,
J.
,
Leary
,
M.
,
Subic
,
A.
, and
Gibson
,
M. A.
,
2014
, “
A Review of Shape Memory Alloy Research, Applications and Opportunities
,”
Mater. Des.
,
56
, pp.
1078
1113
.
3.
Barbarino
,
S.
,
Saavedra Flores
,
E. L.
,
Ajaj
,
R. M.
,
Dayyani
,
I.
, and
Friswell
,
M. I.
,
2014
, “
A Review on Shape Memory Alloys With Applications to Morphing Aircraft
,”
Smart Mater. Struct.
,
23
(
6
), p.
63001
.
4.
Sreekumar
,
M.
,
Nagarajan
,
T.
,
Singaperumal
,
M.
,
Zoppi
,
M.
, and
Molfino
,
R.
,
2007
, “
Critical Review of Current Trends in Shape Memory Alloy Actuators for Intelligent Robots
,”
Indus. Rob.
,
34
(
4
), pp.
285
294
.
5.
Costanza
,
G.
, and
Tata
,
M. E.
,
2020
, “
Shape Memory Alloys for Aerospace, Recent Developments, and New Applications: A Short Review
,”
Materials
,
13
(
8
), p.
1856
.
6.
Bellouard
,
Y.
,
2008
, “
Shape Memory Alloys for Microsystems: A Review From a Material Research Perspective
,”
Mater. Sci. Eng. A
,
481–482
(
1–2 C1
), pp.
582
589
.
7.
Mehrpouya
,
M.
, and
Bidsorkhi
,
H. C.
,
2016
, “
MEMS Applications of Niti Based Shape Memory Alloys: A Review
,”
Micro Nanosyst.
,
8
(
2
), pp.
79
91
.
8.
Choudhary
,
N.
, and
Kaur
,
D.
,
2016
, “
Shape Memory Alloy Thin Films and Heterostructures for Mems Applications: A Review
,”
Sens. Actuat. A
,
242
, pp.
162
181
.
9.
Nespoli
,
A.
,
Besseghini
,
S.
,
Pittaccio
,
S.
,
Villa
,
E.
, and
Viscuso
,
S.
,
2010
, “
The High Potential of Shape Memory Alloys in Developing Miniature Mechanical Devices: A Review on Shape Memory Alloy Mini-actuators
,”
Sens. Actuat. A.
,
158
(
1
), pp.
149
160
.
10.
Khoo
,
Z. X.
,
Liu
,
Y.
,
An
,
J.
,
Chua
,
C. K.
,
Shen
,
Y. F.
, and
Kuo
,
C. N.
,
2018
, “
A Review of Selective Laser Melted Niti Shape Memory Alloy
,”
Materials
,
11
(
4
), p.
519
.
11.
Safaei
,
K.
,
Abedi
,
H.
,
Nematollahi
,
M.
,
Kordizadeh
,
F.
,
Dabbaghi
,
H.
,
Bayati
,
P.
,
Javanbakht
,
R.
,
Jahadakbar
,
A.
,
Elahinia
,
M.
, and
Poorganji
,
B.
,
2021
, “
Additive Manufacturing of Niti Shape Memory Alloy for Biomedical Applications: Review of the LPBF Process Ecosystem
,”
J. Miner., Metals Mater. Soc.
,
73
(
12
), pp.
3771
3786
.
12.
Cheng
,
Y. T.
, and
Cheng
,
C. M.
,
1998
, “
Relationships Between Hardness, Elastic Modulus, and the Work of Indentation
,”
Appl. Phys. Lett.
,
73
(
5
), pp.
614
616
.
13.
Gouldstone
,
A.
,
Chollacoop
,
N.
,
Dao
,
M.
,
Li
,
J.
,
Minor
,
A. M.
, and
Shen
,
Y. L.
,
2007
, “
Indentation Across Size Scales and Disciplines: Recent Developments in Experimentation and Modeling
,”
Acta Mater.
,
55
(
12
), pp.
4015
4039
.
14.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
1992
, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
,
7
(
6
), pp.
1564
1583
.
15.
Giannakopoulos
,
A. E.
, and
Suresh
,
S.
,
1999
, “
Determination of Elastoplastic Properties by Instrumented Sharp Indentation
,”
Scr. Mater.
,
40
(
10
), pp.
1191
1198
.
16.
Dao
,
M.
,
Chollacoop
,
N.
,
Van Vliet
,
K. J.
,
Venkatesh
,
T. A.
, and
Suresh
,
S.
,
2001
, “
Computational Modeling of the Forward and Reverse Problems in Instrumented Sharp Indentation
,”
Acta Mater.
,
49
(
19
), pp.
3899
3918
.
17.
Patel
,
D. K.
, and
Kalidindi
,
S. R.
,
2017
, “
Estimating the Slip Resistance From Spherical Nanoindentation and Orientation Measurements in Polycrystalline Samples of Cubic Metals
,”
Int. J. Plast.
,
92
, pp.
19
30
.
18.
Fernandez-Zelaia
,
P.
,
Joseph
,
V. R.
,
Kalidindi
,
S. R.
, and
Melkote
,
S. N.
,
2018
, “
Estimating Mechanical Properties From Spherical Indentation Using Bayesian Approaches
,”
Mater. Des.
,
147
, pp.
92
105
.
19.
Patel
,
D. K.
,
Al-Harbi
,
H. F.
, and
Kalidindi
,
S. R.
,
2014
, “
Extracting Single-Crystal Elastic Constants From Polycrystalline Samples Using Spherical Nanoindentation and Orientation Measurements
,”
Acta Mater.
,
79
, pp.
108
116
.
20.
Chen
,
X.
,
Jiang
,
W.
,
Lu
,
S.
,
Zhao
,
S.
,
Ma
,
Y.
,
Hu
,
H.
,
Fu
,
T.
, and
Peng
,
X.
,
2023
, “
Effect of Material Parameters on the Indentation Mechanical Behavior of Superelastic Niti Shape Memory Alloy
,”
J. Mater. Eng. Perform.
,
33
(
5
), pp.
1
16
.
21.
Ma
,
X. G.
, and
Komvopoulos
,
K.
,
2003
, “
Nanoscale Pseudoelastic Behavior of Indented Titanium–nickel Films
,”
Appl. Phys. Lett.
,
83
(
18
), pp.
3773
3775
.
22.
Pfetzing-Micklich
,
J.
,
Wieczorek
,
N.
,
Simon
,
T.
,
Maaß
,
B.
, and
Eggeler
,
G.
,
2014
, “
Direct Microstructural Evidence for the Stress Induced Formation of Martensite During Nanonindentation of Niti
,”
Mater. Sci. Eng. A
,
591
, pp.
33
37
.
23.
Laplanche
,
G.
,
Pfetzing-Micklich
,
J.
, and
Eggeler
,
G.
,
2014
, “
Sudden Stress-Induced Transformation Events During Nanoindentation of Niti Shape Memory Alloys
,”
Acta Mater.
,
78
, pp.
144
160
.
24.
Amini
,
A.
,
Yan
,
W.
, and
Sun
,
Q.
,
2011
, “
Depth Dependency of Indentation Hardness During Solid-State Phase Transition of Shape Memory Alloys
,”
Appl. Phys. Lett.
,
99
(
2
), p.
021901
.
25.
Gall
,
K.
,
Juntunen
,
K.
,
Maier
,
H. J.
,
Sehitoglu
,
H.
, and
Chumlyakov
,
Y. I.
,
2001
, “
Instrumented Micro-Indentation of Niti Shape-Memory Alloys
,”
Acta Mater.
,
49
(
16
), pp.
3205
3217
.
26.
Cheng
,
F. T.
,
Shi
,
P.
, and
Man
,
H. C.
,
2001
, “
Correlation of Cavitation Erosion Resistance With Indentation-Derived Properties for a Niti Alloy
,”
Scr. Mater.
,
45
(
9
), pp.
1083
1089
.
27.
Dhala
,
S.
,
Mishra
,
S.
,
Tewari
,
A.
, and
Alankar
,
A.
,
2019
, “
Analyses of Orientation Dependent Nanoindentation Response of Pseudoelastic Niti Alloy Using a Crystal Plasticity Model
,”
Mech. Mater.
,
135
, pp.
1
12
.
28.
Kang
,
G.
, and
Yan
,
W.
,
2009
, “
Effects of Phase Transition on the Hardness of Shape Memory Alloys
,”
Appl. Phys. Lett.
,
94
(
26
), p.
261906
.
29.
Kan
,
Q.
,
Yan
,
W.
,
Kang
,
G.
, and
Sun
,
Q.
,
2013
, “
Oliver-Pharr Indentation Method in Determining Elastic Moduli of Shape Memory Alloys-A Phase Transformable Material
,”
J. Mech. Phys. Solids
,
61
(
10
), pp.
2015
2033
.
30.
Allmaras
,
M.
,
Bangerth
,
W.
,
Linhart
,
J. M.
,
Polanco
,
J.
,
Wang
,
F.
,
Wang
,
K.
,
Webster
,
J.
, and
Zedler
,
S.
,
2013
, “
Estimating Parameters in Physical Models Through Bayesian Inversion: A Complete Example
,”
Soc. Indus. Appl. Math. Rev.
,
55
(
1
), pp.
149
167
.
31.
Aguilar
,
O.
,
Allmaras
,
M.
,
Bangerth
,
W.
, and
Tenorio
,
L.
,
2015
, “
Statistics of Parameter Estimates: a Concrete Example
,”
Soc. Indus. Appl. Math. Rev.
,
57
(
1
), pp.
131
149
.
32.
Kaipio
,
J.
, and
Somersalo
,
E.
,
2006
,
Statistical and Computational Inverse Problems
, Vol.
160
,
Springer
,
New York
.
33.
Tarantola
,
A.
,
2005
, Inverse Problem Theory and Methods for Model Parameter Estimation. Society for Industrial and Applied mathematics.
34.
Kennedy
,
M. C.
, and
O’Hagan
,
A.
,
2001
, “
Bayesian Calibration of Computer Models
,”
J. R. Stat. Soc. Seri. B: Stat. Methodol.
,
63
(
3
), pp.
425
464
.
35.
Collis
,
J.
,
Connor
,
A. J.
,
Paczkowski
,
M.
,
Kannan
,
P.
,
Pitt-Francis
,
J.
,
Byrne
,
H. M.
, and
Hubbard
,
M. E.
,
2017
, “
Bayesian Calibration, Validation and Uncertainty Quantification for Predictive Modelling of Tumour Growth: A Tutorial
,”
Bull. Math. Biology
,
79
(
4
), pp.
939
974
.
36.
Wu
,
X.
,
Kozlowski
,
T.
,
Meidani
,
H.
, and
Shirvan
,
K.
,
2018
, “
Inverse Uncertainty Quantification Using the Modular Bayesian Approach Based on Gaussian Process, Part 1: Theory
,”
Nucl. Eng. Des.
,
335
, pp.
339
355
.
37.
Geyer
,
C. J.
,
1992
, “
Practical Markov Chain Monte Carlo
,”
Stat. Sci.
,
7
(
4
), pp.
473
483
.
38.
Andrieu
,
C.
,
Freitas
,
N. D.
,
Doucet
,
A.
, and
Jordan
,
M. I.
,
2003
, “
An Introduction to MCMC for Machine Learning
,”
Mach. Learn.
,
50
(
1–2
), pp.
5
43
.
39.
Pelton
,
A.
,
DiCello
,
J.
, and
Miyazaki
,
S.
,,
2000
, “
Optimisation of Processing and Properties of Medical Grade Nitinol Wire
,”
Min. Invas. Ther. Allied Tech.
,
9
(
2
), pp.
107
118
.
40.
Byrd
,
R. H.
,
Lu
,
P.
,
Nocedal
,
J.
, and
Zhu
,
C.
,
1995
, “
A Limited Memory Algorithm for Bound Constrained Optimization
,”
SIAM J. Sci. Comput.
,
16
(
5
), pp.
1190
1208
.
41.
McClarren
,
R. G.
,
2018
,
Uncertainty Quantification and Predictive Computational Science
, 1st ed.,
Springer
.
42.
Rasmussen
,
C. E.
, and
Williams
,
C.
,
2005
, Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning Series), 1st ed., The MIT Press.
43.
Murphy
,
K. P.
,
2012
, Machine Learning: A Probabilistic Perspective (Adaptive Computation and Machine Learning Series), 1st ed., The MIT Press.
44.
Gelman
,
A.
,
Carlin
,
J. B.
,
Stern
,
H. S.
,
Dunson
,
D. B.
,
Vehtari
,
A.
, and
Rubin
,
D. B.
,
2013
,
Bayesian Data Analysis
, 3rd ed.,
CRC Press
,
New York
.
45.
Simpson
,
D.
,
Rue
,
H.
,
Riebler
,
A.
,
Martins
,
T. G.
, and
Sørbye
,
S. H.
,
2017
, “
Penalising Model Component Complexity: A Principled, Practical Approach to Constructing Priors
,”
Stat. Sci.
,
32
(
1
), pp.
1
28
.
46.
Foreman-Mackey
,
D.
,
Hogg
,
D. W.
,
Lang
,
D.
, and
Goodman
,
J.
,
2013
, “
EMCEE: The MCMC Hammer
,”
Publicat. Astron. Soc. Pacific
,
125
(
925
), p.
306
.
47.
Au
,
S. K.
,
2012
, “
Connecting Bayesian and Frequentist Quantification of Parameter Uncertainty in System Identification
,”
Mech. Syst. Signal. Process.
,
29
, pp.
328
342
.
48.
Metropolis
,
N.
, and
Ulam
,
S.
,
1949
, “
The Monte Carlo Method
,”
J. Am. Stat. Assoc.
,
44
(
247
), pp.
335
341
.
49.
Hastings
,
W. K.
,
1970
, “Monte Carlo Sampling Methods Using Markov Chains and Their Applications”.
50.
Neal
,
R. M.
,
2003
, “
Slice Sampling
,”
Ann. Stat.
,
31
(
3
), pp.
705
767
.
51.
Hoffman
,
M. D.
, and
Gelman
,
A.
,
2014
, “
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo
,”
J. Mach. Learn. Res.
,
15
(
1
), pp.
1593
1623
. https://arxiv.org/abs/1111.4246
52.
Hill
,
T. P.
, and
Miller
,
J.
,
2011
, “
How to Combine Independent Data Sets for the Same Quantity
,”
Chaos
,
21
(
3
), p.
033102
.
53.
Boyd
,
J. G.
, and
Lagoudas
,
D. C.
,
1996
, “
A Thermodynamical Constitutive Model for Shape Memory Materials. Part I. The Monolithic Shape Memory Alloy
,”
Inter. J. Plast.
,
12
(
6
), pp.
805
842
.
54.
Zhang
,
M.
, and
Baxevanis
,
T.
,
2021
, “
An Extended Three-Dimensional Finite Strain Constitutive Model for Shape Memory Alloys
,”
ASME J. Appl. Mech.
,
88
(
11
), p.
111010
.
You do not currently have access to this content.