Abstract

Dynamic mechanical metamaterials (MMs) are artificial media composed of periodic micro-structures, designed to manipulate wave propagation. Modeling and designing MMs can be computationally demanding due to the broad design space spanned by the geometric and material parameters. This work aims to develop a generalized reduced order modeling approach for determining MM dynamics in low frequency ranges with accuracy and speed, using a limited number of parameters and small matrices. The MM unit cells are treated as assemblies of structural elements with discrete degrees-of-freedom, whose effective stiffness and inertia are determined by optimizing energy criteria based on continuum results derived from a small number of eigen-study simulations. This proposed approach offers a parameterized and discretized representation of MM systems, which leads to fast and accurate computation of eigen-study results for periodic arrays, as well as dynamic responses in time domain for finite-sized arrays. The high computational efficiency and physical accuracy of this method will help streamline the modeling process and aid in design discovery and optimization, especially in combination with machine learning and data-driven techniques.

References

1.
Chen
,
J. S.
, and
Chien
,
I. T.
,
2017
, “
Dynamic Behavior of a Metamaterial Beam With Embedded Membrane-Mass Structures
,”
ASME J. Appl. Mech.
,
84
(
12
), p.
121007
.
2.
Fang
,
X.
,
Chuang
,
K. C.
,
Jin
,
X. L.
,
Wang
,
D. F.
, and
Huang
,
Z. L.
,
2021
, “
An Inertant Elastic Metamaterial Plate With Extra Wide Low-Frequency Flexural Band Gaps
,”
ASME J. Appl. Mech.
,
88
(
2
), p.
021002
.
3.
Baertsch
,
F.
,
Ameli
,
A.
, and
Mayer
,
T.
,
2021
, “
Finite-Element Modeling and Optimization of 3D-Printed Auxetic Reentrant Structures With Stiffness Gradient Under Low-Velocity Impact
,”
J. Eng. Mech.
,
147
(
7
), pp.
1
13
.
4.
Ding
,
C.
,
Hao
,
L.
,
Zhao
,
X.
,
Ding
,
C.
,
Hao
,
L.
, and
Zhao
,
X.
,
2010
, “
Two-Dimensional Acoustic Metamaterial With Negative Modulus
,”
ASME J. Appl. Phys.
,
108
(
7
), p.
074911
.
5.
Seo
,
Y. M.
,
Park
,
J. J.
,
Lee
,
S. H.
,
Park
,
C. M.
,
Kim
,
C. K.
, and
Lee
,
S. H.
,
2012
, “
Acoustic Metamaterial Exhibiting Four Different Sign Combinations of Density and Modulus
,”
ASME J. Appl. Phys.
,
111
(
2
), p.
023504
.
6.
Li
,
Y.
,
Lan
,
J.
,
Li
,
B.
,
Liu
,
X.
, and
Zhang
,
J.
,
2016
, “
Nonlinear Effects in an Acoustic Metamaterial With Simultaneous Negative Modulus and Density
,”
ASME J. Appl. Phys.
,
120
(
14
), p.
145105
.
7.
Nemat-Nasser
,
S.
,
2015
, “
Anti-Plane Shear Waves in Periodic Elastic Composites: Band Structure and Anomalous Wave Refraction
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
,
471
(
2180
), p.
20150152
.
8.
Chen
,
H.
, and
Chan
,
C. T.
,
2007
, “
Acoustic Cloaking in Three Dimensions Using Acoustic Metamaterials
,”
Appl. Phys. Lett.
,
91
(
18
), pp.
1
4
.
9.
Norris
,
A. N.
, and
Shuvalov
,
A. L.
,
2011
, “
Elastic Cloaking Theory
,”
Wave Motion
,
48
(
6
), pp.
525
538
.
10.
Zhu
,
X.
,
Ramezani
,
H.
,
Shi
,
C.
,
Zhu
,
J.
, and
Zhang
,
X.
,
2014
, “
PT -Symmetric Acoustics
,”
Phys. Rev. X
,
4
(
3
), pp.
1
7
.
11.
Cummer
,
S. A.
,
Christensen
,
J.
, and
Alù
,
A.
,
2016
, “
Controlling Sound With Acoustic Metamaterials
,”
Nat. Rev. Mater.
,
1
(
3
), p.
16001
.
12.
Oh
,
J. H.
,
Qi
,
S.
,
Kim
,
Y. Y.
, and
Assouar
,
B.
,
2017
, “
Elastic Metamaterial Insulator for Broadband Low-Frequency Flexural Vibration Shielding
,”
Phys. Rev. Appl.
,
8
(
5
), p.
054034
.
13.
Matlack
,
K. H.
,
Serra-Garcia
,
M.
,
Palermo
,
A.
,
Huber
,
S. D.
, and
Daraio
,
C.
,
2018
, “
Designing Perturbative Metamaterials From Discrete Models
,”
Nat. Mater.
,
17
(
4
), pp.
323
328
.
14.
Wu
,
T.-T.
,
Huang
,
Z.-G.
, and
Lin
,
S.
,
2004
, “
Surface and Bulk Acoustic Waves in Two-Dimensional Phononic Crystal Consisting of Materials With General Anisotropy
,”
Phys. Rev. B
,
69
(
9
), p.
094301
.
15.
Sridhar
,
A.
,
Kouznetsova
,
V. G.
, and
Geers
,
M. G.
,
2017
, “
A Semi-Analytical Approach Towards Plane Wave Analysis of Local Resonance Metamaterials Using a Multiscale Enriched Continuum Description
,”
Int. J. Mech. Sci.
,
133
, pp.
188
198
.
16.
Lu
,
Y.
, and
Srivastava
,
A.
,
2017
, “
Combining Plane Wave Expansion and Variational Techniques for Fast Phononic Computations
,”
J. Eng. Mech.
,
143
(
12
), p.
04017141
.
17.
Oudich
,
M.
,
Zhou
,
X.
, and
Badreddine Assouar
,
M.
,
2014
, “
General Analytical Approach for Sound Transmission Loss Analysis Through a Thick Metamaterial Plate
,”
J. Appl. Phys.
,
116
(
19
), p.
193509
.
18.
Mead
,
D. J.
,
1996
, “
Wave Propagation in Continuous Periodic Structures: Research Contributions From Southampton, 1964–1995
,”
J. Sound Vib.
,
190
(
3
), pp.
495
524
.
19.
Junyi
,
L.
, and
Balint
,
D.
,
2015
, “
An Inverse Method to Determine the Dispersion Curves of Periodic Structures Based on Wave Superposition
,”
J. Sound Vib.
,
350
, pp.
41
72
.
20.
Amirkhizi
,
A. V.
, and
Alizadeh
,
V.
,
2018
, “
Overall Constitutive Description of Symmetric Layered Media Based on Scattering of Oblique SH Waves
,”
Wave Motion
,
83
, pp.
214
226
.
21.
Huang
,
H. W.
,
Wang
,
J.
,
Zhao
,
C.
, and
Mo
,
Y. L.
,
2021
, “
Two-Dimensional Finite-Element Simulation of Periodic Barriers
,”
J. Eng. Mech.
,
147
(
2
), pp.
1
14
.
22.
Aghighi
,
F.
,
Morris
,
J.
, and
Amirkhizi
,
A. V.
,
2019
, “
Low-Frequency Micro-Structured Mechanical Metamaterials
,”
Mech. Mater.
,
130
, pp.
65
75
.
23.
Amirkhizi
,
A. V.
, and
Wang
,
W.
,
2018
, “
Reduced Order Derivation of the Two-Dimensional Band Structure of a Mixed-Mode Resonator Array
,”
J. Appl. Phys.
,
124
(
24
), p.
245103
.
24.
Kidder
,
R. L.
,
1973
, “
Reduction of Structural Frequency Equations.
,”
AIAA J.
,
11
(
6
), pp.
892
892
.
25.
Gordis
,
J. H.
,
1992
, “
An Analysis of the Improved Reduced System (IRS) Model Reduction Procedure
,”
10th International Modal Analysis Conference
,
San Diego, CA
,
Feb. 3–7
.
26.
O’Callahan
,
J.
,
Avitabile
,
P.
, and
Riemer
,
R.
,
1989
, “
System Equivalent Reduction Expansion Process (SEREP)
,”
7th International Modal Analysis Conference
,
Las Vegas, NV
,
Jan. 30–Feb. 2
, pp.
29
37
.
27.
Hussein
,
M. I.
,
2009
, “
Reduced Bloch Mode Expansion for Periodic Media Band Structure Calculations
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
465
(
2109
), pp.
2825
2848
.
28.
Krattiger
,
D.
, and
Hussein
,
M. I.
,
2014
, “
Bloch Mode Synthesis: Ultrafast Methodology for Elastic Band-Structure Calculations
,”
Phys. Rev. E
,
90
(
6
), p.
063306
.
29.
Krattiger
,
D.
, and
Hussein
,
M. I.
,
2018
, “
Generalized Bloch Mode Synthesis for Accelerated Calculation of Elastic Band Structures
,”
J. Comput. Phys.
,
357
, pp.
183
205
.
30.
Jung
,
J.
,
Goo
,
S.
, and
Kook
,
J.
,
2020
, “
Design of a Local Resonator Using Topology Optimization to Tailor Bandgaps in Plate Structures
,”
Mater. Des.
,
191
, p.
108627
.
31.
Dertimanis
,
V. K.
,
Antoniadis
,
I. A.
, and
Chatzi
,
E. N.
,
2016
, “
Feasibility Analysis on the Attenuation of Strong Ground Motions Using Finite Periodic Lattices of Mass-in-Mass Barriers
,”
J. Eng. Mech.
,
142
(
9
), pp.
1
10
.
32.
Wagner
,
P.-R.
,
Dertimanis
,
V. K.
,
Chatzi
,
E. N.
, and
Beck
,
J. L.
,
2018
, “
Robust-to-Uncertainties Optimal Design of Seismic Metamaterials
,”
J. Eng. Mech.
,
144
(
3
), pp.
1
17
.
33.
Morris
,
J.
,
Wang
,
W.
,
Shah
,
D.
,
Plaisted
,
T.
,
Hansen
,
C. J.
, and
Amirkhizi
,
A. V.
,
2022
, “
Expanding the Design Space and Optimizing Stop Bands for Mechanical Metamaterials
,”
Mater. Des.
,
216
, p.
110510
.
34.
Lu
,
Y.
, and
Srivastava
,
A.
,
2018
, “
Level Repulsion and Band Sorting in Phononic Crystals
,”
J. Mech. Phys. Solids
,
111
, pp.
100
112
.
35.
Truong
,
K.
, and
Avitabile
,
P.
,
2015
, “Development of Reduced Order Models to Non-Modeled Regions,”
Special Topics in Structural Dynamics, Volume 6
,
Springer International Publishing
,
Cham, Switzerland
, pp.
1
11
.
36.
Qu
,
Z.-Q.
,
2004
,
Model Order Reduction Techniques
,
Springer London
,
London
.
37.
Ferreira
,
A.
,
2008
, “MATLAB Codes for Finite Element Analysis: Solids and Structures,” Solid Mechanics and Its Applications.
Springer Netherlands
.
38.
Guyan
,
R. J.
,
1965
, “
Reduction of Stiffness and Mass Matrices
,”
AIAA J.
,
3
(
2
), pp.
380
380
.
39.
Wang
,
W.
, and
Amirkhizi
,
A. V.
,
2022
, “
Exceptional Points and Scattering of Discrete Mechanical Metamaterials
,”
Eur. Phys. J. Plus
,
137
(
4
), p.
414
.
40.
Mokhtari
,
A. A.
,
Lu
,
Y.
, and
Srivastava
,
A.
,
2019
, “
On the Properties of Phononic Eigenvalue Problems
,”
J. Mech. Phys. Solids
,
131
, pp.
167
179
.
41.
Wang
,
W.
,
Cheney
,
W.
, and
Amirkhizi
,
A.
,
2013
, “
Generative Design of Graded Metamaterial Arrays for Dynamic Response Modulation
.”
42.
Cheney
,
W.
,
Wang
,
W.
,
Caliskan
,
E.
,
Abedi
,
R.
, and
Amirkhizi
,
A.
,
2013
, “
Time Domain Parameter Extraction for High-Efficiency Reduced Order Models of Resonant Microstructured Arrays
.”
43.
Schiavone
,
A.
,
Li
,
Z.
, and
Wang
,
X.
,
2021
, “
Modeling and Analysis of the Transient Behavior of an Elastic Metamaterial as a Generalized Cosserat Continuum
,”
ASME J. Appl. Mech.
,
88
(
9
), p.
091003
.
44.
Morris
,
J.
, and
Amirkhizi
,
A. V.
,
2022
, “
Multi-point Scattering Measurements for Effective Property Extraction From Metamaterials With Skin Effects
,” arXiv:2206.12453 [physics].
45.
Farzbod
,
F.
, and
Scott-Emuakpor
,
O. E.
,
2020
, “
Interactions Beyond Nearest Neighbors in a Periodic Structure: Force Analysis
,”
Int. J. Solids Struct.
,
199
, pp.
203
211
.
46.
Mailybaev
,
A. A.
,
Kirillov
,
O. N.
, and
Seyranian
,
A. P.
,
2005
, “
Geometric Phase Around Exceptional Points
,”
Phys. Rev. A
,
72
(
1
), p.
014104
.
47.
Asbóth
,
J. K.
,
Oroszlány
,
L.
, and
Pályi
,
A.
,
2016
,
A Short Course on Topological Insulators, Vol. 919 of Lecture Notes in Physics
,
Springer International Publishing
,
Cham
.
48.
Süsstrunk
,
R.
, and
Huber
,
S. D.
,
2016
, “
Classification of Topological Phonons in Linear Mechanical Metamaterials
,”
Proc. Natl. Acad. Sci.
,
113
(
33
), pp.
E4767
E4775
.
49.
Dembowski
,
C.
,
Dietz
,
B.
,
Gräf
,
H. D.
,
Harney
,
H. L.
,
Heine
,
A.
,
Heiss
,
W. D.
, and
Richter
,
A.
,
2004
, “
Encircling an Exceptional Point
,”
Phys. Rev. E
,
69
(
5
), p.
056216
.
50.
Doppler
,
J.
,
Mailybaev
,
A. A.
,
Böhm
,
J.
,
Kuhl
,
U.
,
Girschik
,
A.
,
Libisch
,
F.
,
Milburn
,
T. J.
,
Rabl
,
P.
,
Moiseyev
,
N.
, and
Rotter
,
S.
,
2016
, “
Dynamically Encircling an Exceptional Point for Asymmetric Mode Switching
,”
Nature
,
537
(
7618
), pp.
76
79
.
You do not currently have access to this content.