Abstract

A coupling of moving morphable void and component approach for the topology optimization of hydrogel structures involving recoverable large deformation is proposed in this paper. In this approach, the geometric parameters of moving morphable voids and components are set as design variables to respectively describe the outline and material distribution of hydrogel structures for the first time. To facilitate the numerical simulation of large deformation behavior of hydrogel structures during the optimization process, the design variables are mapped to the density field of the design domain and the density field is then used to interpolate the strain energy density function of the element. Furthermore, the adjoint sensitivity of the optimization formulation is derived and combined with the gradient-based algorithm to solve the topology optimization problem effectively. Finally, two representative numerical examples of the optimization of isotropic hydrogel structures are used to prove the effectiveness of the proposed method, and the optimization design of an anisotropic bionic hydrogel structure is presented to illustrate the applicability of the method. Experimental results are also presented to demonstrate that the explicit topologies obtained from the method can be directly used in the manufacture of hydrogel-based soft devices.

References

1.
Banerjee
,
H.
,
Suhail
,
M.
, and
Ren
,
H.
,
2018
, “
Hydrogel Actuators and Sensors for Biomedical Soft Robots: Brief Overview With Impending Challenges
,”
Biomimetics
,
3
(
3
), p.
15
.
2.
Cianchetti
,
M.
,
Laschi
,
C.
,
Menciassi
,
A.
, and
Dario
,
P.
,
2018
, “
Biomedical Applications of Soft Robotics
,”
Nat. Rev. Mater.
,
3
(
6
), pp.
143
153
.
3.
Huang
,
C.
,
Lv
,
J. A.
,
Tian
,
X.
,
Wang
,
Y.
,
Yu
,
Y.
, and
Liu
,
J.
,
2015
, “
Miniaturized Swimming Soft Robot With Complex Movement Actuated and Controlled by Remote Light Signals
,”
Sci. Rep.
,
5
, p.
17414
.
4.
Scalet
,
G.
,
2020
, “
Two-Way and Multiple-Way Shape Memory Polymers for Soft Robotics: An Overview
,”
Actuators
,
9
(
1
), p.
10
.
5.
Coulter
,
F. B.
, and
Ianakiev
,
A.
,
2015
, “
4D Printing Inflatable Silicone Structures
,”
3D Print. Addit. Manuf.
,
2
(
3
), pp.
140
144
.
6.
Champeau
,
M.
,
Heinze
,
D. A.
,
Viana
,
T. N.
,
de Souza
,
E. R.
,
Chinellato
,
A. C.
, and
Titotto
,
S.
,
2020
, “
4D Printing of Hydrogels: A Review
,”
Adv. Funct. Mater.
,
30
(
31
), p.
1910606
.
7.
Bakarich
,
S. E.
,
Gorkin
,
R.
,
Panhuis
,
M.
, and
Spinks
,
G. M.
,
2015
, “
4D Printing With Mechanically Robust, Thermally Actuating Hydrogels
,”
Macromol. Rapid Commun.
,
36
(
12
), pp.
1211
1217
.
8.
Gladman
,
A. S.
,
Matsumoto
,
E. A.
,
Nuzzo
,
R. G.
,
Mahadevan
,
L.
, and
Lewis
,
J. A.
,
2016
, “
Biomimetic 4D Printing
,”
Nat. Mater.
,
15
(
4
), pp.
413
418
.
9.
Polygerinos
,
P.
,
Wang
,
Z.
,
Galloway
,
K. C.
,
Wood
,
R. J.
, and
Walsh
,
C. J.
,
2015
, “
Soft Robotic Glove for Combined Assistance and at-Home Rehabilitation
,”
Rob. Auton. Syst.
,
73
(
SI
), pp.
135
143
.
10.
Fusco
,
S.
,
Sakar
,
M. S.
,
Kennedy
,
S.
,
Peters
,
C.
,
Bottani
,
R.
,
Starsich
,
F.
,
Mao
,
A.
, et al
,
2014
, “
An Integrated Microrobotic Platform for On-Demand, Targeted Therapeutic Interventions
,”
Adv. Mater.
,
26
(
6
), pp.
952
957
.
11.
Yuk
,
H.
,
Lin
,
S.
,
Ma
,
C.
,
Takaffoli
,
M.
,
Fang
,
N. X.
, and
Zhao
,
X.
,
2017
, “
Hydraulic Hydrogel Actuators and Robots Optically and Sonically Camouflaged in Water
,”
Nat. Commun.
,
8
, p.
14230
.
12.
Flory
,
P. J.
, and
Rehner
,
J.
,
1943
, “
Statistical Mechanics of Cross-linked Polymer Networks II. Swelling
,”
J. Chem. Phys.
,
11
(
11
), pp.
512
520
.
13.
Hong
,
W.
,
Zhao
,
X.
,
Zhou
,
J.
, and
Suo
,
Z.
,
2008
, “
A Theory of Coupled Diffusion and Large Deformation in Polymeric Gels
,”
J. Mech. Phys. Solids.
,
56
(
5
), pp.
1779
1793
.
14.
Yang
,
Q. S.
,
Liu
,
B. S.
, and
Meng
,
L. T.
,
2009
, “
A Phenomenological Theory and Numerical Procedure for Chemo-Mechanical Coupling Behavior of Hydrogel
,”
CMC-Comput. Mater. Con.
,
12
(
1
), pp.
39
55
.
15.
Liu
,
Y.
,
Zhang
,
H.
, and
Zheng
,
Y.
,
2015
, “
A Multiplicative Finite Element Algorithm for the Inhomogeneous Swelling of Polymeric Gels
,”
Comput. Methods Appl. Mech. Eng.
,
283
, pp.
517
550
.
16.
Menzel
,
A.
,
2007
, “
A Fibre Reorientation Model for Orthotropic Multiplicative Growth. Configurational Driving Stresses, Kinematics-Based Reorientation, and Algorithmic Aspects
,”
Biomech. Model. Mechanobiol.
,
6
(
5
), pp.
303
320
.
17.
Ciarletta
,
P.
, and
Ben Amar
,
M.
,
2012
, “
Pattern Formation in Fiber-Reinforced Tubular Tissues: Folding and Segmentation During Epithelial Growth
,”
J. Mech. Phys. Solids.
,
60
(
3
), pp.
525
537
.
18.
Liu
,
Y.
,
Zhang
,
H.
,
Zhang
,
J.
, and
Zheng
,
Y.
,
2015
, “
Constitutive Modeling for Polymer Hydrogels: A New Perspective and Applications to Anisotropic Hydrogels in Free Swelling
,”
Eur. J. Mech. A-Solids.
,
54
, pp.
171
186
.
19.
Bendsoe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.
20.
Bendsoe
,
M. P.
, and
Sigmund
,
O.
,
1999
, “
Material Interpolation Schemes in Topology Optimization
,”
Arch. Appl. Mech.
,
69
(
9–10
), pp.
635
654
.
21.
Sokolowski
,
J.
, and
Zochowski
,
A.
,
1999
, “
On the Topological Derivative in Shape Optimization
,”
SIAM J. Control
,
37
(
4
), pp.
1251
1272
.
22.
Allaire
,
G.
,
Jouve
,
F.
, and
Toader
,
A. M.
,
2004
, “
Structural Optimization Using Sensitivity Analysis and a Level-Set Method
,”
J. Comput. Phys.
,
194
(
1
), pp.
363
393
.
23.
Yamada
,
T.
,
Izui
,
K.
,
Nishiwaki
,
S.
, and
Takezawa
,
A.
,
2010
, “
A Topology Optimization Method Based on the Level Set Method Incorporating a Fictitious Interface Energy
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
45–48
), pp.
2876
2891
.
24.
Buhl
,
T.
,
Pedersen
,
C. B. W.
, and
Sigmund
,
O.
,
2000
, “
Stiffness Design of Geometrically Nonlinear Structures Using Topology Optimization
,”
Struct. Multidiscip. Optim.
,
19
(
2
), pp.
93
104
.
25.
Sigmund
,
O.
,
2001
, “
Design of Multiphysics Actuators Using Topology Optimization—Part I: One-Material Structures
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
49–50
), pp.
6577
6604
.
26.
Bruns
,
T. E.
, and
Tortorelli
,
D. A.
,
2001
, “
Topology Optimization of Non-Linear Elastic Structures and Compliant Mechanisms
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
26–27
), pp.
3443
3459
.
27.
Cho
,
S. H.
, and
Kwak
,
J.
,
2006
, “
Topology Design Optimization of Geometrically Non-linear Structures Using Meshfree Method
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
44–47
), pp.
5909
5925
.
28.
Fuchi
,
K.
,
Ware
,
T. H.
,
Buskohl
,
P. R.
,
Reich
,
G. W.
,
Vaia
,
R. A.
,
White
,
T. J.
, and
Joo
,
J. J.
,
2015
, “
Topology Optimization for the Design of Folding Liquid Crystal Elastomer Actuators
,”
Soft Matter
,
11
(
37
), pp.
7288
7295
.
29.
Kwok
,
T.-H.
,
Wang
,
C. C. L.
,
Deng
,
D.
,
Zhang
,
Y.
, and
Chen
,
Y.
,
2015
, “
Four-Dimensional Printing for Freeform Surfaces: Design Optimization of Origami and Kirigami Structures
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111413
.
30.
Luo
,
Y.
,
Wang
,
M. Y.
, and
Kang
,
Z.
,
2015
, “
Topology Optimization of Geometrically Nonlinear Structures Based on an Additive Hyperelasticity Technique
,”
Comput. Methods Appl. Mech. Eng.
,
286
, pp.
422
441
.
31.
Xue
,
R.
,
Li
,
R.
,
Du
,
Z.
,
Zhang
,
W.
,
Zhu
,
Y.
,
Sun
,
Z.
, and
Guo
,
X.
,
2017
, “
Kirigami Pattern Design of Mechanically Driven Formation of Complex 3D Structures Through Topology Optimization
,”
Extreme Mech. Lett.
,
15
, pp.
139
144
.
32.
Guo
,
X.
,
Zhang
,
W.
, and
Zhong
,
W.
,
2014
, “
Doing Topology Optimization Explicitly and Geometrically—A New Moving Morphable Components Based Framework
,”
ASME J. Appl. Mech.
,
81
(
8
), p.
081009
.
33.
Geiss
,
M. J.
,
Boddeti
,
N.
,
Weeger
,
O.
,
Maute
,
K.
, and
Dunn
,
M. L.
,
2019
, “
Combined Level-Set-XFEM-Density Topology Optimization of Four-Dimensional Printed Structures Undergoing Large Deformation
,”
ASME J. Mech. Des.
,
141
(
5
), p.
051405
.
34.
Zhang
,
W.
,
Yang
,
W.
,
Zhou
,
J.
,
Li
,
D.
, and
Guo
,
X.
,
2017
, “
Structural Topology Optimization Through Explicit Boundary Evolution
,”
ASME J. Appl. Mech.
,
84
(
1
), p.
011011
.
35.
Huang
,
R.
,
Xue
,
Y. H.
,
Li
,
Z. J.
, and
Liu
,
Z. S.
,
2020
, “
Programmable Spiral and Helical Deformation Behaviors of Hydrogel-Based Bi-material Beam Structures
,”
Int. J. Struct. Stab. Dyn.
,
20
(
13
), p.
2041010
.
36.
Pedersen
,
C. B. W.
,
Buhl
,
T.
, and
Sigmund
,
O.
,
2001
, “
Topology Synthesis of Large-Displacement Compliant Mechanisms
,”
Int. J. Numer. Methods Eng.
,
50
(
12
), pp.
2683
2705
.
37.
Liu
,
Y.
,
Zhang
,
H.
,
Zhang
,
J.
, and
Zheng
,
Y.
,
2016
, “
Transient Swelling of Polymeric Hydrogels: A New Finite Element Solution Framework
,”
Int. J. Solids Struct.
,
80
, pp.
246
260
.
38.
Holzapfel
,
G. A.
,
2004
,
Computational Biomechanics of Soft Biological Tissue
,
John Wiley & Sons, Ltd
.,
Hoboken, NJ
.
39.
Ogden
,
R. W.
,
2009
, “Anisotropy and Nonlinear Elasticity in Arterial Wall Mechanics,”
Biomechanical Modelling at the Molecular, Cellular and Tissue Levels
,
G. A.
Holzapfel
, and
R. W.
Ogden
, eds.,
Springer
,
Vienna
.
40.
Merodio
,
J.
, and
Ogden
,
R. W.
,
2005
, “
Mechanical Response of Fiber-Reinforced Incompressible Non-Linearly Elastic Solids
,”
Int. J. Nonlin. Mech.
,
40
(
2–3
), pp.
213
227
.
41.
Liu
,
Z. S.
,
Toh
,
W.
, and
Ng
,
T. Y.
,
2015
, “
Advances in Mechanics of Soft Materials: A Review of Large Deformation Behavior of Hydrogels
,”
Int. J. Appl. Mech.
,
7
(
5
), p.
1530001
.
42.
Huang
,
R.
,
Zheng
,
S. J.
,
Liu
,
Z. S.
, and
Ng
,
T. Y.
,
2020
, “
Recent Advances of the Constitutive Models of Smart Materials—Hydrogels and Shape Memory Polymers
,”
Int. J. Appl. Mech.
,
12
(
2
), p.
2050014
.
43.
Zhou
,
Y.
,
Hu
,
J.
, and
Liu
,
Z.
,
2019
, “
Deformation Behavior of Fiber-Reinforced Hydrogel Structures
,”
Int. J. Struct. Stab.
,
19
(
3
), p.
1950032
.
44.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes-a New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
.
45.
Valentin
,
T. M.
,
DuBois
,
E. M.
,
Machnicki
,
C. E.
,
Bhaskar
,
D.
,
Cui
,
F. R.
, and
Wong
,
I. Y.
,
2019
, “
3D Printed Self-Adhesive PEGDA–PAA Hydrogels as Modular Components for Soft Actuators and Microfluidics
,”
Polym. Chem.
,
10
(
16
), pp.
2015
2028
.
46.
Wang
,
X.
,
Hu
,
P.
, and
Kang
,
Z.
,
2019
, “
Layout Optimization of Continuum Structures Embedded With Movable Components and Holes Simultaneously
,”
Struct. Multidiscip. Optim.
,
61
(
2
), pp.
555
573
.
You do not currently have access to this content.