Abstract
In this paper, a data-driven approach for constructing elastoplastic constitutive law of microstructured materials is proposed by combining the insights from plasticity theory and the tools of artificial intelligence (i.e., constructing yielding function through ANN) to reduce the required amount of data for machine learning. Illustrative examples show that the constitutive laws constructed by the present approach can be used to solve the boundary value problems (BVPs) involving elastoplastic materials with microstructures under complex loading paths (e.g., cyclic/reverse loading) effectively. The limitation of the proposed approach is also discussed.
References
1.
Hill
, R.
, 1998
, The Mathematical Theory of Plasticity
, Oxford University Press
, New York
.2.
Hill
, R.
, and Rice
, J. R.
, 1972
, “Constitutive Analysis of Elastic-Plastic Crystals at Arbitrary Strain
,” J. Mech. Phys. Solids
, 20
(6
), pp. 401
–413
. 10.1016/0022-5096(72)90017-83.
Drucker
, D. C.
, and Prager
, W3.
, 1952
, “Soil Mechanics and Plastic Analysis or Limit Design
,” Q. Appl. Math.
, 10
(2
), pp. 157
–165
. 10.1090/qam/482914.
Fung
, Y. C.
, and Drucker
, D. C.
, 1966
, “Foundation of Solid Mechanics
,” ASME J. Appl. Mech.
, 33
(1
), p. 238
. 10.1115/1.36250185.
Ghaboussi
, J.
, and Sidarta
, D. E.
, 1998
, “New Nested Adaptive Neural Networks (NANN) for Constitutive Modeling
,” Comput. Geotech.
, 22
(1
), pp. 29
–52
. 10.1016/S0266-352X(97)00034-76.
Furukawa
, T.
, and Yagawa
, G.
, 1998
, “Implicit Constitutive Modelling for Viscoplasticity Using Neural Networks
,” Int. J. Numer. Methods Eng.
, 43
(2
), pp. 195
–219
. 10.1002/(SICI)1097-0207(19980930)43:2<195::AID-NME418>3.0.CO;2-67.
Al-Haik
, M.
, Hussaini
, M.
, and Garmestani
, H.
, 2006
, “Prediction of Nonlinear Viscoelastic Behavior of Polymeric Composites Using an Artificial Neural Network
,” Int. J. Plast.
, 22
(7
), pp. 1367
–1392
. 10.1016/j.ijplas.2005.09.0028.
Yang
, H.
, Guo
, X.
, Tang
, S.
, and Liu
, W. K.
, 2019
, “Derivation of Heterogeneous Material Laws Via Data-Driven Principal Component Expansions
,” Comput. Mech.
, 64
(2
), pp. 365
–379
. 10.1007/s00466-019-01728-w9.
Zopf
, C.
, and Kaliske
, M.
, 2017
, “Numerical Characterisation of Uncured Elastomers by a Neural Network Based Approach
,” Comput. Struct.
, 182
, pp. 504
–525
. 10.1016/j.compstruc.2016.12.01210.
Mozaffar
, M.
, Bostanabad
, R.
, Chen
, W.
, Ehmann
, K.
, Cao
, J.
, and Bessa
, M.
, 2019
, “Deep Learning Predicts Path-Dependent Plasticity
,” Proc. Natl. Acad. Sci. U. S. A.
, 116
(52
), pp. 26414
–26420
. 10.1073/pnas.191181511611.
Wang
, K.
, and Sun
, W.
, 2019
, “Meta-Modeling Game for Deriving Theory-Consistent, Microstructure-Based Traction–Separation Laws Via Deep Reinforcement Learning
,” Comput. Methods Appl. Mech. Eng.
, 346
, pp. 216
–241
. 10.1016/j.cma.2018.11.02612.
Wang
, K.
, and Sun
, W.
, 2018
, “A Multiscale Multi-Permeability Poroplasticity Model Linked by Recursive Homogenizations and Deep Learning
,” Comput. Methods Appl. Mech. Eng.
, 334
, pp. 337
–380
. 10.1016/j.cma.2018.01.03613.
Liu
, Z.
, Bessa
, M. A.
, and Liu
, W. K.
, 2016
, “Self-Consistent Clustering Analysis: An Efficient Multi-Scale Scheme for Inelastic Heterogeneous Materials
,” Comput. Methods Appl. Mech. Eng.
, 306
, pp. 319
–341
. 10.1016/j.cma.2016.04.00414.
Bessa
, M. A.
, Bostanabad
, R.
, Liu
, Z.
, Hu
, A.
, Apley
, D. W.
, Brinson
, C.
, Chen
, W.
, and Liu
, W. K.
, 2017
, “A Framework for Data-Driven Analysis of Materials Under Uncertainty: Countering the Curse of Dimensionality
,” Comput. Methods Appl. Mech. Eng.
, 320
, pp. 633
–667
. 10.1016/j.cma.2017.03.03715.
Kafka
, O. L.
, Cheng
, Y.
, Shakoor
, M.
, Liu
, Z.
, Wagner
, G. J.
, and Liu
, W. K.
, 2018
, “Data-Driven Mechanistic Modeling of Influence of Microstructure on High-Cycle Fatigue Life of Nickel Titanium
,” J. Metals
, 70
(7
), pp. 1
–5
. 10.1007/s11837-018-2868-216.
Liu
, Z.
, Fleming
, M.
, and Liu
, W. K.
, 2018
, “Microstructural Material Database for Self-Consistent Clustering Analysis of Elastoplastic Strain Softening Materials
,” Comput. Methods Appl. Mech. Eng.
, 330
, pp. 547
–577
. 10.1016/j.cma.2017.11.00517.
Shakoor
, M.
, Kafka
, O. L.
, and Liu
, W. K.
, 2019
, “Data Science for Finite Strain Mechanical Science of Ductile Materials
,” Comput. Mech.
, 64
(1
), pp. 33
–45
. 10.1007/s00466-018-1655-918.
Cheng
, G.
, Li
, X.
, Nie
, Y.
, and Li
, H.
, 2019
, “FEM-Cluster Based Reduction Method for Efficient Numerical Prediction of Effective Properties of Heterogeneous Material in Nonlinear Range
,” Comput. Methods Appl. Mech. Eng.
, 348
, pp. 157
–184
. 10.1016/j.cma.2019.01.01919.
Nie
, Y.
, Cheng
, G.
, Li
, X.
, Xu
, L.
, and Li
, K.
, 2019
, “Principle of Cluster Minimum Complementary Energy of FEM-Cluster-Based Reduced Order Method: Fast Updating the Interaction Matrix and Predicting Effective Nonlinear Properties of Heterogeneous Material
,” Comput. Mech.
, 64
(2
), pp. 323
–349
. 10.1007/s00466-019-01710-620.
Tang
, S.
, Zhang
, L.
, and Liu
, W. K.
, 2018
, “From Virtual Clustering Analysis to Self-Consistent Clustering Analysis: a Mathematical Study
,” Comput. Mech.
, 62
(6
), pp. 1443
–1460
. 10.1007/s00466-018-1573-x21.
Kirchdoerfer
, T.
, and Ortiz
, M.
, 2016
, “Data Driven Computational Mechanics
,” Comput. Methods Appl. Mech. Eng.
, 304
, pp. 81
–101
. 10.1016/j.cma.2016.02.00122.
Eggersmann
, R.
, Kirchdoerfer
, T.
, Reese
, S.
, Stainier
, L.
, and Ortiz
, M.
, 2019
, “Model-Free Data-Driven Inelasticity
,” Comput. Methods Appl. Mech. Eng.
, 350
, pp. 81
–99
. 10.1016/j.cma.2019.02.01623.
Hill
, R.
, 1985
, “On the Micro-to-Macro Transition in Constitutive Analyses of Elastoplastic Response at Finite Strain
,” Math. Proc. Camb. Philos. Soc.
, 98
(3
), pp. 579
–590
. 10.1017/S030500410006378724.
Nemat-Nasser
, S.
, and Hori
, M.
, 1993
, Micromechanics: Overall Properties of Heterogeneous Materials
, Elsevier
, Amsterdam
.25.
Suquet
, P. M.
, 1985
, “Local and Global Aspects in the Mathematical Theory of Plasticity
,” Plasticity Today: Modelling, Methods and Applications
, A.
Sawczuk
and G.
Bianchi
, eds., Elsevier Applied Science Publishers
, pp. 279
–310
.26.
Hill
, R.
, 1965
, “Continuum Micro-Mechanics of Elastoplastic Polycrystals
,” J. Mech. Phys. Solids
, 13
(2
), pp. 89
–101
. 10.1016/0022-5096(65)90023-227.
Hill
, R.
, 1972
, “On Constitutive Macro-Variables for Heterogeneous Solids at Finite Strain
,” Proc. R. Soc. Lond. A: Math. Phys. Sci.
, 326
(1565
), pp. 131
–147
. 0.1098/rspa.1972.000128.
Simo
, J. C.
, and Hughes
, T. J.
, 2006
, Computational Inelasticity
, Vol. 7
, Springer Science & Business Media
.Copyright © 2020 by ASME
You do not currently have access to this content.