Abstract

In this work, we propose a circular membrane-based flexoelectric energy harvester. Different from previously reported nanobeams based flexoelectric energy harvesters, for the flexoelectric membrane, the polarization direction around its center is opposite in sign to that far away from the center. To avoid the cancelation of the electric output, electrodes coated to upper and lower surfaces of the flexoelectric membrane are respectively divided into two parts according to the sign of bending curvatures. Based on Hamilton’s principle and Ohm’s law, we obtain governing equations for the circular membrane-based flexoelectric energy harvester. A generalized assumed-modes method is employed for solving the system, so that the performance of the flexoelectric energy harvester can be studied in detail. We analyze the effects of the thickness h, radius r0, and their ratio on the energy harvesting performance. Specifically, we show that, by selecting appropriate h and r0, it is possible to design an energy harvester with both high energy conversion efficiency and low working frequency. At last, through numerical simulations, we further study the optimization ratio for which the electrodes should be divided.

References

1.
Hudak
,
N. S.
, and
Amatucci
,
G. G.
,
2008
, “
Small-Scale Energy Harvesting Through Thermoelectric, Vibration, and Radiofrequency Power Conversion
,”
J. Appl. Phys.
,
103
(
10
), p.
101301
. 10.1063/1.2918987
2.
Erturk
,
A.
, and
Inman
,
D. J.
,
2011
,
Piezoelectric Energy Harvesting
,
John Wiley & Sons, Ltd.
,
Chichester
.
3.
Elvin
,
N.
, and
Erturk
,
A.
,
2013
,
Advances in Energy Harvesting Methods
,
Springer Science and Business Media
,
New York
.
4.
Zhang
,
S.-W.
,
Zhang
,
H.
,
Zhang
,
B.-P.
, and
Yang
,
S.
,
2010
, “
Phase-Transition Behavior and Piezoelectric Properties of Lead-Free (Ba0.95Ca0.05)(Ti1−xZrx)O3 Ceramics
,”
J. Alloys Compd.
,
506
(
1
), pp.
131
135
. 10.1016/j.jallcom.2010.06.157
5.
Nishikawa
,
T.
,
Takahashi
,
J.
,
Hattori
,
A.
, and
Takatsu
,
M.
,
1992
,
Fracture Mechanics of Ceramics
, Vol.
9
,
Springer
,
Boston, MA
, pp.
493
500
.
6.
Shrout
,
T. R.
, and
Zhang
,
S. J.
,
2007
, “
Lead-Free Piezoelectric Ceramics: Alternatives for Pzt?
,”
J. Electroceram.
,
19
(
1
), pp.
113
126
. 10.1007/s10832-007-9047-0
7.
Deng
,
Q.
,
Kammoun
,
M.
,
Erturk
,
A.
, and
Sharma
,
P.
,
2014
, “
Nanoscale Flexoelectric Energy Harvesting
,”
Int. J. Solids Struct.
,
51
(
18
), pp.
3218
3225
. 10.1016/j.ijsolstr.2014.05.018
8.
Zubko
,
P.
,
Catalan
,
G.
, and
Tagantsev
,
A. K.
,
2013
, “
Flexoelectric Effect in Solids
,”
Annu. Rev. Mater. Res.
,
43
(
1
), pp.
387
421
. 10.1146/annurev-matsci-071312-121634
9.
Kalinin
,
S. V.
, and
Meunier
,
V.
,
2008
, “
Electronic Flexoelectricity in Low-Dimensional Systems
,”
Phys. Rev. B
,
77
(
3
), p.
033403
. 10.1103/PhysRevB.77.033403
10.
Tagantsev
,
A.
,
1986
, “
Piezoelectricity and Flexoelectricity in Crystalline Dielectrics
,”
Phys. Rev. B
,
34
(
8
), pp.
5883
5889
. 10.1103/PhysRevB.34.5883
11.
Yudin
,
P.
, and
Tagantsev
,
A.
,
2013
, “
Fundamentals of Flexoelectricity in Solids
,”
Nanotechnology
,
24
(
43
), p.
432001
. 10.1088/0957-4484/24/43/432001
12.
Nguyen
,
T. D.
,
Mao
,
S.
,
Yeh
,
Y.-W.
,
Purohit
,
P. K.
, and
McAlpine
,
M. C.
,
2013
, “
Nanoscale Flexoelectricity
,”
Adv. Mater.
,
25
(
7
), pp.
946
974
. 10.1002/adma.201203852
13.
Ahmadpoor
,
F.
, and
Sharma
,
P.
,
2015
, “
Flexoelectricity in Two-Dimensional Crystalline and Biological Membranes
,”
Nanoscale
,
7
(
40
), pp.
16555
16570
. 10.1039/C5NR04722F
14.
Krichen
,
S.
, and
Sharma
,
P.
,
2016
, “
Flexoelectricity: A Perspective on An Unusual Electromechanical Coupling
,”
J. Appl. Mech.
,
83
(
3
), p.
030801
. 10.1115/1.4032378
15.
Schulz
,
M.
, and
Marvan
,
M.
,
1991
, “
The Theory of Flexoelectric Effect of Polymer Glasses
,”
Colloid Polym. Sci.
,
269
(
6
), pp.
553
555
. 10.1007/BF00659908
16.
Hong
,
J.
, and
Vanderbilt
,
D.
,
2011
, “
First-Principles Theory of Frozen-Ion Flexoelectricity
,”
Phys. Rev. B
,
84
(
18
), p.
180101
. 10.1103/PhysRevB.84.180101
17.
Majdoub
,
M.
,
Sharma
,
P.
, and
Cagin
,
T.
,
2008
, “
Enhanced Size-Dependent Piezoelectricity and Elasticity in Nanostructures Due to the Flexoelectric Effect
,”
Phys. Rev. B
,
77
(
12
), p.
125424
. 10.1103/PhysRevB.77.125424
18.
Shen
,
S.
, and
Hu
,
S.
,
2010
, “
A Theory of Flexoelectricity With Surface Effect for Elastic Dielectrics
,”
J. Mech. Phys. Solids
,
58
(
5
), pp.
665
677
. 10.1016/j.jmps.2010.03.001
19.
Deng
,
Q.
,
Liu
,
L.
, and
Sharma
,
P.
,
2014
, “
Flexoelectricity in Soft Materials and Biological Membranes
,”
J. Mech. Phys. Solids
,
62
(
1
), pp.
209
227
. 10.1016/j.jmps.2013.09.021
20.
Ma
,
W.
, and
Cross
,
L. E.
,
2003
, “
Strain-Gradient-Induced Electric Polarization in Lead Zirconate Titanate Ceramics
,”
Appl. Phys. Lett.
,
82
(
19
), pp.
3293
3295
. 10.1063/1.1570517
21.
Ma
,
W.
, and
Cross
,
L. E.
,
2006
, “
Flexoelectricity of Barium Titanate
,”
Appl. Phys. Lett.
,
88
(
23
), p.
232902
. 10.1063/1.2211309
22.
Narvaez
,
J.
,
Saremi
,
S.
,
Hong
,
J.
,
Stengel
,
M.
, and
Catalan
,
G.
,
2015
, “
Large Flexoelectric Anisotropy in Paraelectric Barium Titanate
,”
Phys. Rev. Lett.
,
115
(
3
), p.
037601
. 10.1103/PhysRevLett.115.037601
23.
Zhang
,
S.
,
Liu
,
K.
,
Xu
,
M.
,
Shen
,
H.
,
Chen
,
K.
,
Feng
,
B.
, and
Shen
,
S.
,
2017
, “
Investigation of the 2312 Flexoelectric Coefficient Component of Polyvinylidene Fluoride: Deduction, Simulation, and Mensuration
,”
Sci. Rep.
,
7
(
1
), pp.
3134
3134
. 10.1038/s41598-017-03403-7
24.
Piedrahita
,
C. R.
,
Yue
,
P.
,
Cao
,
J.
,
Lee
,
H.
,
Rajapaksha
,
C. P.
,
Feng
,
C.
,
Jákli
,
A.
, and
Kyu
,
T.
,
2020
, “
Flexoelectricity in Flexoionic Polymer Electrolyte Membranes: Effect of Thiosiloxane Modification on Poly(Ethylene Glycol) Diacrylate and Ionic Liquid Electrolyte Composites
,”
ACS Appl. Mater. Interfaces
,
12
(
14
), pp.
16978
16986
. 10.1021/acsami.0c02328
25.
Outram
,
B. I.
, and
Elston
,
S. J.
,
2013
, “
Frequency-Dependent Dielectric Contribution of Flexoelectricity Allowing Control of State Switching in Helicoidal Liquid Crystals
,”
Phys. Rev. E
,
88
(
1
), p.
012506
. 10.1103/PhysRevE.88.012506
26.
Park
,
S. M.
,
Wang
,
B.
,
Das
,
S.
,
Chae
,
S. C.
,
Chung
,
J. S.
,
Yoon
,
J.
,
Chen
,
L.
,
Yang
,
S. M.
, and
Noh
,
T. W.
,
2018
, “
Selective Control of Multiple Ferroelectric Switching Pathways Using a Trailing Flexoelectric Field
,”
Nat. Nanotechnol.
,
13
(
5
), pp.
366
370
. 10.1038/s41565-018-0083-5
27.
Kwon
,
S. R.
,
Huang
,
W.
,
Zhang
,
S.
,
Yuan
,
F.
, and
Jiang
,
X.
,
2016
, “
Study on a Flexoelectric Microphone Using Barium Strontium Titanate
,”
J. Micromechan. Microeng.
,
26
(
4
), p.
045001
. 10.1088/0960-1317/26/4/045001
28.
Bhaskar
,
U. K.
,
Banerjee
,
N.
,
Abdollahi
,
A.
,
Wang
,
Z.
,
Schlom
,
D. G.
,
Rijnders
,
G.
, and
Catalan
,
G.
,
2016
, “
A Flexoelectric Microelectromechanical System on Silicon
,”
Nat. Nanotechnol.
,
11
(
3
), pp.
263
266
. 10.1038/nnano.2015.260
29.
Liang
,
X.
,
Hu
,
S.
, and
Shen
,
S.
,
2017
, “
Nanoscale Mechanical Energy Harvesting Using Piezoelectricity and Flexoelectricity
,”
Smart Mater. Struct.
,
26
(
3
), p.
035050
. 10.1088/1361-665X/26/3/035050
30.
Moura
,
A. G.
, and
Erturk
,
A.
,
2017
, “
Electroelastodynamics of Flexoelectric Energy Conversion and Harvesting in Elastic Dielectrics
,”
J. Appl. Phys.
,
121
(
6
), p.
064110
. 10.1063/1.4976069
31.
Zhou
,
Y.
,
Yang
,
X.
,
Pan
,
D.
, and
Wang
,
B.
,
2018
, “
Improved Incorporation of Strain Gradient Elasticity in the Flexoelectricity Based Energy Harvesting From Nanobeams
,”
Physica E: Low-Dimensional Syst. Nanostruct.
,
98
(
1
), pp.
148
158
. 10.1016/j.physe.2017.12.037
32.
Wang
,
K.
,
Wang
,
B.
, and
Zeng
,
S.
,
2018
, “
Analysis of an Array of Flexoelectric Layered Nanobeams for Vibration Energy Harvesting
,”
Compos. Struct.
,
187
(
1
), pp.
48
57
. 10.1016/j.compstruct.2017.12.040
33.
Shu
,
L.
,
Ke
,
S.
,
Fei
,
L.
,
Huang
,
W.
,
Wang
,
Z.
,
Gong
,
J.
,
Jiang
,
X.
,
Wang
,
L.
,
Li
,
F.
,
Lei
,
S.
,
Rao
,
Z.
,
Zhou
,
Y.
,
Zheng
,
R.-K.
,
Yao
,
X.
,
Wang
,
Y.
,
Stengel
,
M.
, and
Catalan
,
G.
,
2020
, “
Photoflexoelectric Effect in Halide Perovskites
,”
Nat. Mater.
10.1038/s41563-020-0659-y
34.
Huang
,
S.
,
Qi
,
L.
,
Huang
,
W.
,
Shu
,
L.
,
Zhou
,
S.
, and
Jiang
,
X.
,
2018
, “
Flexoelectricity in Dielectrics: Materials, Structures and Characterizations
,”
J. Adv. Dielectrics
,
08
(
02
), p.
1830002
. 10.1142/S2010135X18300025
35.
Wang
,
Z. L.
, and
Song
,
J.
,
2006
, “
Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays
,”
Science
,
312
(
5771
), pp.
242
246
. 10.1126/science.1124005
36.
Sahin
,
E.
, and
Dost
,
S.
,
1988
, “
A Strain-Gradients Theory of Elastic Dielectrics With Spatial Dispersion
,”
Int. J. Eng. Sci.
,
26
(
12
), pp.
1231
1245
. 10.1016/0020-7225(88)90043-2
37.
Kelly
,
P.
,
2013
,
Solid Mechanics Part II: Engineering Solid Mechanics Small Strain
,
The University of Auckland
,
Auckland
.
38.
Timoshenko
,
S. P.
, and
Woinowsky-Krieger
,
S.
,
1959
,
Theory of Plates and Shells
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.