The recently developed distinct element method for mesoscale modeling of carbon nanotubes is extended to account for energy dissipation and then applied to characterize the constitutive behavior of crystalline carbon nanotube bundles subjected to simple tension and to simple shear loadings. It is shown that if these structures are sufficiently long and thick, then they become representative volume elements. The predicted initial stiffness and strength of the representative volumes are in agreement with reported experimental data. The simulations demonstrate that energy dissipation plays a central role in the mechanical response and deformation kinematics of carbon nanotube bundles.

References

1.
Thostenson
,
E.
,
Li
,
C.
, and
Chou
,
T.-W.
,
2005
, “
Nanocomposites in Context
,”
Compos. Sci. Technol.
,
65
(3-4), pp.
491
516
.10.1016/j.compscitech.2004.11.003
2.
Tahhan
,
M.
,
Truong
,
V.-T.
,
Spinks
,
G. M.
, and
Wallace
,
G. G.
,
2003
, “
Carbon Nanotube and Polyaniline Composite Actuators
,”
Smart Mater. Struct.
,
12
(4), pp.
626
632
.10.1088/0964-1726/12/4/313
3.
Hobbie
,
E. K.
,
Simien
,
D. O.
,
Fagan
,
J. A.
,
Huh
,
J. Y.
,
Chung
,
J. Y.
,
Hudson
,
S. D.
, and
Obrzut
,
J.
,
2010
, “
Wrinkling and Strain Softening in Single-Wall Carbon Nanotube Membranes
,”
Phys. Rev. Lett.
,
104
(
12
), p.
125505
.10.1103/PhysRevLett.104.125505
4.
Suhr
,
J.
,
Kotakar
,
N.
,
Keblinski
,
P.
, and
Ajayan
,
P.
,
2005
, “
Viscoelasticity in Carbon Nanotube Composites
,”
Nature Mater.
,
4
, pp.
134
137
.10.1038/nmat1293
5.
Xu
,
M.
,
Futaba
,
D. N.
,
Yamada
,
T.
,
Yumura
,
M.
, and
Hata
,
K.
,
2010
, “
Carbon Nanotubes With Temperature-Invariant Viscoelasticity From −196° to 1000 °C
,”
Science
,
330
(6009), pp.
1364
1368
.10.1126/science.1194865
6.
Thess
,
A.
,
Lee
,
R.
,
Nikolaev
,
P.
,
Dai
,
H.
,
Petit
,
P.
,
Robert
,
J.
,
Xu
,
C.
,
Lee
,
Y. H.
,
Kim
,
S. G.
,
Rinzler
,
A. G.
,
Colbert
,
D. T.
,
Scuseria
,
G.
,
Tomanek
,
D.
,
Fischer
,
J. E.
, and
Smalley
,
R. E.
,
1996
, “
Crystalline Ropes of Metallic Carbon Nanotubes
,”
Science
,
273
(5274), pp.
483
487
.10.1126/science.273.5274.483
7.
Yu
,
M.-F.
,
Files
,
B. S.
,
Arepalli
,
S.
, and
Ruoff
,
R. S.
,
2000
, “
Tensile Loading of Ropes of Single Wall Carbon Nanotubes and Their Mechanical Properties
,”
Phys. Rev. Lett.
,
84
(
24
), pp.
5552
5555
.10.1103/PhysRevLett.84.5552
8.
Vigolo
,
B.
,
Penicaud
,
A.
,
Coulon
,
C.
,
Sauder
,
C.
,
Pailler
,
R.
,
Journet
,
C.
,
Bernier
,
P.
, and
Poulin
,
P.
,
2000
, “
Macroscopic Fibers and Ribbons of Oriented Carbon Nanotubes
,”
Science
,
290
(5495), pp.
1331
1334
.10.1126/science.290.5495.1331
9.
Zhu
,
H. W.
,
Xu
,
C. L.
,
Wu
,
D. H.
,
Wei
,
B. Q.
,
Vajtai
,
R.
, and
Ajayan
,
P. M.
,
2002
, “
Direct Synthesis of Long Single-Walled Carbon Nanotube Strands
,”
Science
,
296
(5569), pp.
884
886
.10.1126/science.1066996
10.
Foroughi
,
J.
,
Spinks
,
G. M.
,
Wallace
,
G. G.
,
Oh
,
J.
,
Kozlov
,
M. E.
,
Fang
,
S.
,
Mirfakhrai
,
T.
,
Madden
,
J. D. W.
,
Shin
,
M. K.
,
Kim
,
S. J.
, and
Baughman
,
R. H.
,
2011
, “
Torsional Carbon Nanotube Artificial Muscles
,”
Science
,
334
(6055), pp.
494
497
.10.1126/science.1211220
11.
Beese
,
A. M.
,
Sarkar
,
S.
,
Nair
,
A.
,
Naraghi
,
M.
,
An
,
Z.
,
Moravsky
,
A.
,
Loutfy
,
R. O.
,
Buehler
,
M. J.
,
Nguyen
,
S. T.
, and
Espinosa
,
H. D.
,
2013
, “
Bio-Inspired Carbon Nanotube Polymer Composite Yarns With Hydrogen Bond-Mediated Lateral Interactions
,”
ACS Nano
,
7
(
4
), pp.
3434
3446
.10.1021/nn400346r
12.
Dalton
,
A. B.
,
Collins
,
S.
,
Munoz
,
E.
,
Razal
,
J. M.
,
Ebron
, V
. H.
,
Ferraris
,
J. P.
,
Coleman
,
J. N.
,
Kim
,
B. G.
, and
Baughman
,
R. H.
,
2003
, “
Super-Tough Carbon-Nanotube Fibers
,”
Nature
,
423
(6941), pp.
703
.10.1038/423703a
13.
Behabtu
,
N.
,
Young
,
C. C.
,
Tsentalovich
,
D. E.
,
Kleinerman
,
O.
,
Wang
,
X.
,
Ma
,
A. W. K.
,
Bengio
,
E. A.
,
Waarbeek
,
R. F.
,
Jong
,
J. J.
,
Hoogerwerf
,
R. E.
,
Fairchild
,
S. B.
,
Ferguson
,
J. B.
,
Maruyama
,
B.
,
Kono
,
J.
,
Talmon
,
Y.
,
Cohen
,
Y.
,
Otto
,
M. J.
, and
Pasquali
,
M.
,
2013
, “
Strong, Light, Multifunctional Fibers of Carbon Nanotubes With Ultrahigh Conductivity
,”
Science
339
(
6116
), pp.
182
186
.10.1126/science.1228061
14.
Dumitrică
,
T.
,
Hua
,
M.
, and
Yakobson
,
B.
,
2006
, “
Symmetry-, Time-, and Temperature-Dependent Strength of Carbon Nanotubes
,”
Proc. Natl. Acad. Sci. U.S.A.
,
103
(
16
), pp.
6105
6109
.10.1073/pnas.0600945103
15.
Zhang
,
D.-B.
, and
Dumitrică
,
T.
,
2008
, “
Elasticity of Ideal Single-Walled Carbon Nanotubes Via Symmetry-Adapted Tight-Binding Objective Modeling
,”
Appl. Phys. Lett.
,
93
, p.
031919
.10.1063/1.2965465
16.
Zhang
,
D.-B.
,
James
,
R.
, and
Dumitrică
,
T.
,
2009
, “
Electromechanical Characterization of Carbon Nanotubes in Torsion Via Symmetry Adapted Tight-Binding Objective Molecular Dynamics
,”
Phys. Rev. B
,
80
(
11
), p.
115418
.10.1103/PhysRevB.80.115418
17.
Nikiforov
,
I.
,
Zhang
,
D.-B.
,
James
,
R.
, and
Dumitrică
,
T.
,
2010
, “
Wavelike Rippling in Multiwalled Carbon Nanotubes Under Pure Bending
,”
Appl. Phys. Lett.
,
96
(12), p.
123107
.10.1063/1.3368703
18.
Berhan
,
L.
,
Yi
,
Y. B.
,
Sastrya
,
A. M.
,
Munoz
,
E.
,
Selvidge
,
M.
, and
Baughman
,
R.
,
2004
, “
Mechanical Properties of Nanotube Sheets: Alterations in Joint Morphology and Achievable Moduli in Manufacturable Materials
,”
J. Appl. Phys.
,
95
(
8
), pp.
4335
4345
.10.1063/1.1687995
19.
Buehler
,
M. J.
,
2006
, “
Mesoscale Modeling of Mechanics of Carbon Nanotubes: Self-Assembly, Self-Folding, and Fracture
,”
J. Mater. Res.
,
21
(
11
), pp.
2855
2869
.10.1557/jmr.2006.0347
20.
Cranford
,
S. W.
, and
Buehler
,
M. J.
,
2010
, “
In Silico Assembly and Nanomechanical Characterization of Carbon Nanotube Buckypaper
,”
Nanotechnology
,
21
(26), p.
265706
.10.1088/0957-4484/21/26/265706
21.
Hahm
,
M. G.
,
Wang
,
H.
,
Jung
,
H.
,
Hong
,
S.
,
Lee
,
S. G.
,
Kim
,
S. R.
,
Upmanyu
,
M.
, and
Jung
Y. J.
,
2012
, “
Bundling Dynamics Regulates the Active Mechanics and Transport in Carbon Nanotube Networks and Their Nanocomposites
,”
Nanoscale
,
4
(
11
), pp.
3584
3590
.10.1039/c2nr30254c
22.
Xie
,
B.
,
Liu
,
Y.
,
Ding
,
Y.
,
Zheng
,
Q.
, and
Xu
,
Z.
,
2011
, “
Mechanics of Carbon Nanotube Networks: Microstructural Evolution and Optimal Design
,”
Soft Matter
,
7
(21), pp.
10039
10047
.10.1039/c1sm06034a
23.
Li
,
Y.
, and
Kroger
,
M.
,
2012
, “
A Theoretical Evaluation of the Effects of Carbon Nanotube Entanglement and Bundling on the Structural and Mechanical Properties of Buckypaper
,”
Carbon
,
50
(5), pp.
1793
1806
.10.1016/j.carbon.2011.12.027
24.
Li
,
Y.
, and
Kroger
,
M.
,
2012
, “
Viscoelasticity of Carbon Nanotube Buckypaper: Zipping–Unzipping Mechanism and Entanglement Effects
,”
Soft Matter
,
8
(30), pp.
7822
7830
.10.1039/c2sm25561h
25.
Zhigilei
,
L. V.
,
Wei
,
C.
, and
Srivastava
,
D.
,
2005
, “
Mesoscopic Model for Dynamic Simulations of Carbon Nanotubes
,”
Phys. Rev. B
,
71
(16), p.
165417
.10.1103/PhysRevB.71.165417
26.
Volkov
,
A. N.
, and
Zhigilei
,
L. V.
,
2010
, “
Mesoscopic Interaction Potential of Carbon Nanotubes of Arbitrary Length and Orientation
,”
J. Phys. Chem. C
,
114
(12), pp.
5513
5531
.10.1021/jp906142h
27.
Volkov
,
A. N.
, and
Zhigilei
,
L. V.
,
2010
, “
Structural Stability of Carbon Nanotube Films: The Role of Bending Buckling
,”
ACS Nano
,
4
(
10
), pp.
6187
6195
.10.1021/nn1015902
28.
Jacobs
,
W. M.
,
Nicholson
,
D. A.
,
Zemer
,
H.
,
Volkov
,
A. N.
, and
Zhigilei
,
L. V.
,
2012
, “
Acoustic Energy Dissipation and Thermalization in Carbon Nanotubes: Atomistic Modeling and Mesoscopic Description
,”
Phys. Rev. B
,
86
(16), p.
165414
.10.1103/PhysRevB.86.165414
29.
Anderson
,
T.
,
Akatyeva
,
E.
,
Nikiforov
,
I.
,
Potyondy
,
D.
,
Ballarini
,
R.
, and
Dumitrică
,
T.
,
2010
, “
Toward Distinct Element Method Simulations of Carbon Nanotube Systems
,”
ASME J. Nanotechnol. Eng. Med.
,
1
(4), p.
041009
.10.1115/1.4002609
30.
Ostanin
,
I.
,
Ballarini
,
R.
,
Potyondy
,
D.
, and
Dumitrică
,
T.
,
2013
, “
A Distinct Element Method for Large Scale Simulations of Carbon Nanotube Assemblies
,”
J. Mech. Phys. Solids
,
61
(
3
), pp.
762
782
.10.1016/j.jmps.2012.10.016
31.
Filleter
,
T.
,
Yockel
,
S.
,
Naraghi
,
M.
,
Paci
,
J. T.
,
Compton
,
O. C.
,
Mayes
,
M. L.
,
Nguyen, S-B. T.
,
Schatz
,
G. C.
, and
Espinosa
,
H. D.
,
2012
, “
Experimental-Computational Study of Shear Interactions Within Double-Walled Carbon Nanotube Bundles
,”
Nano Lett.
,
12
(2), pp.
732
742
.10.1021/nl203686d
32.
Zhang
,
Q.
,
Lu
,
Y. C.
,
Du
,
F.
,
Dai
,
L.
,
Baur
,
J.
, and
Foster
,
D. C.
,
2010
, “
Viscoelastic Creep of Vertically Aligned Carbon Nanotubes
,”
J. Phys. D: Appl. Phys.
,
43
(31), p. 315401.10.1088/0022-3727/43/31/315401
33.
Carlson
,
A.
, and
Dumitrică
,
T.
,
2007
, “
Extended Tight-Binding Potential for Modeling Intertube Interactions in Carbon Nanotubes
,”
Nanotechnology
,
18
(
6
), p.
065706
.10.1088/0957-4484/18/6/065706
34.
Johnson
,
S. M.
,
Williams
,
J. R.
, and
Cook
,
B. K.
,
2007
, “
Quaternion-Based Rigid Body Rotation Integration Algorithms for Use in Particle Methods
,”
Int. J. Numer. Meth. Eng.
,
74
(8), pp.
1303
1313
.10.1002/nme.2210
35.
Itasca Consulting Group Inc.
,
2008
, “
PFC3D (Particle Flow Code in 3 Dimensions)
,” Version 4.0, Itasca Consulting Group Inc., Minneapolis, MN.
36.
Tang
,
Y.
,
Ballarini
,
R.
,
Buehler
,
M. J.
, and
Eppell
,
S. J.
,
2010
, “
Deformation Micromechanisms of Collagen Fibrils Under Uniaxial Tension
,”
J. R. Soc. Interface
,
7
(46), pp.
839
850
.10.1098/rsif.2009.0390
37.
Li
,
C.
,
Liu
,
Y.
,
Yao
,
X.
,
Ito
,
M.
,
Noguchi
,
T.
, and
Zheng
,
Q.
,
2010
, “
Interfacial Shear Strengths Between Carbon Nanotubes
,”
Nanotechnology
,
21
(11), p.
115704
.10.1088/0957-4484/21/11/115704
38.
Moore
,
D. F.
,
Ding
,
Y.
, and
Wang
,
Z. L.
,
2004
, “
Crystal Orientation-Ordered ZnS Nanowire Bundles
,”
J. Am. Chem. Soc.
,
126
(44), pp.
14372
14373
.10.1021/ja0451057
39.
Ma
,
J.
,
Liu
,
X.
,
Cao
,
X.
,
Feng
,
S.
, and
Fleet
,
E. M.
,
2006
, “
Bundle of Nanobelts Up to 4 cm in Length: One-Step Synthesis and Preparation of Titanium Trisulfide (TiS3) Nanomaterials
,”
Eur. J. Inorganic Chem.
,
2006
(
3
), pp.
519
522
.10.1002/ejic.200500805
You do not currently have access to this content.