A theoretical model is built for a micrometer size cylindrical shell adhering to a rigid surface in the presence of an electrolyte. In the presence of surface electrostatic double layers and van der Waals attraction according to the Derjaguin–Landau–Verwey–Overbeek (DLVO) theory, the shell deforms and settles in either the primary (1min) or secondary (2min) energy minimum depending on whether it has sufficient energy to overcome the repulsive energy barrier. The adhesion-detachment mechanics are constructed and solved computationally, yielding the relations between applied load, deformed profile, and mechanical stress distribution in the shell. The critical compressive load needed for transition from 2min to 1min is found for several repulsive barrier heights. At a critical pull-off tensile force, shell in the 1min detaches spontaneously at a nonzero contact area, but the one in the 2min detaches smoothly with the contact shrinking to a line contact. The model is relevant to bacterial adhesion in environmental engineering and microelectromechanical systems for microfluidics applications.

References

1.
Maugis
,
D.
,
2000
,
Contact, Adhesion and Rupture of Elastic Solids
,
Springer
,
New York
.
2.
Wan
,
K.-T.
, and
Liu
,
K. K.
,
2001
, “Contact Mechanics of a Thin Walled Capsule Adhered Onto a Rigid Planar Substrate,”
Med. Biol. Eng. Comp.
,
39
(5), pp. 605–608.10.1007/BF02345154
3.
Springman
,
R. M.
, and
Bassani
,
J. L.
,
2009
, “
Mechano-Chemical Coupling in the Adhesion of Thin-Shell Structures
,”
J. Mech. Phys. Solids
,
57
, pp.
909
931
.10.1016/j.jmps.2009.02.002
4.
Majidi
,
C.
, and
Wan
,
K.-T.
,
2010
, “
Adhesion Between Thin Cylindrical Shells With Parallel Axes
,”
ASME J. Appl. Mech.
,
77
(
5)
, p.
041013
.10.1115/1.4000924
5.
Shi
,
J.
,
Müftü
,
S.
, and
Wan
,
K.-T.
,
2012
, “
Adhesion of a Compliant Cylindrical Shell Onto a Rigid Substrate
,”
ASME J. Appl. Mech.
79
(
4
), p.
041015
.10.1115/1.4005555
6.
Shi
,
J.
,
Müftü
,
S.
, and
Wan
,
K.-T.
,
2011
, “
Adhesion of an Elastic Convex Shell Onto a Rigid Plate
,”
J. Adhes.
,
87
, pp.
579
594
.10.1080/00218464.2011.583587
7.
Avall Lundqvist
,
E.
,
Nordstroem
,
L.
,
Sjövall
,
K.
, and
Eneroth
,
P.
,
1989
, “
Evaluation of Seven Different Tumor Markers for the Establishment of Tumor Marker Panels in Gynecologic Malignancies
,”
Eur. J. Gynaecol. Oncol.
,
10
, pp.
395
405
.
8.
Redman
,
J. A.
,
Walker
,
S. L.
, and
Elimelech
,
M.
,
2004
, “
Bacterial Adhesion and Transport in Porous Media: Role of the Secondary Energy Minimum
,”
Environ. Sci. Technol.
,
38
, pp.
1777
1785
.10.1021/es034887l
9.
Maugis
,
D.
,
1992
, “
The JKR-DMT Transition Using a Dugdale Model
,”
J. Colloid Interface Sci.
,
150
, pp.
243
269
.10.1016/0021-9797(92)90285-T
10.
Lan
,
G.
,
Wolgemuth
,
C. W.
, and
Sun
,
S. X.
,
2007
, “
Z-Ring Force and Cell Shape During Division in Rod-Like Bacteria
,”
Proc. Natl. Acad. Sci. U.S.A.
,
104
(
41
), pp.
16,110
16,115
.10.1073/pnas.0702925104
11.
Zhao
,
L.
,
Schaefer
,
D.
,
Xu
,
H.
,
Modi
,
S.
,
LaCourse
,
W.
, and
Marten
,
M.
,
2005
, “
Elastic Properties of the Cell Wall of Aspergillus Nidulans Studied With Atomic Force Microscopy
,”
Biotechnol. Prog.
,
21
(
1
), pp.
292
299
.10.1021/bp0497233
12.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University
,
Cambridge, UK
.
13.
Baney
,
J. M.
, and
Hui
,
C.-Y.
,
1997
, “
A Cohesive Zone Model for the Adhesion of Cylinders
,”
J. Adhes. Sci. Technol.
,
11
(
3
), pp.
393
406
.10.1163/156856197X00778
14.
Morrow
,
C. A.
, and
Lovell
,
M. R.
,
2005
, “
An Extension to a Cohesive Zone Solution for Adhesive Cylinders
,”
ASME J. Tribol.
,
127
, pp.
447
450
.10.1115/1.1828456
15.
Johnson
,
K. L.
, and
Greenwood
,
J. A.
,
2008
, “
A Maugis Analysis of Adhesive Line Contact
,”
J. Phys. D: Appl. Phys.
,
41
, p.
155315
.10.1088/0022-3727/41/15/155315
16.
Li
,
G.
, and
Wan
,
K.-T.
,
2010
, “
Parameter Governing Thin Film Adhesion-Delamination in the Transition From DMT-Limit to JKR-Limit
,”
J. Adhes.
,
86
, pp.
969
981
.10.1080/00218464.2010.515470
17.
Li
,
G.
, and
Wan
,
K.-T.
,
2010
, “
Delamination Mechanics of a Clamped Rectangular Membrane in the Presence of Long-Range Intersurface Forces: Transition From JKR to DMT Limits
,”
J. Adhes.
,
86
(
3
), pp.
1
18
.10.1080/00218460903417651
18.
Yao
,
K.-M.
,
Habibian
,
M. T.
, and
O'Mella
,
C. R.
,
1971
, “
Water and Waste Water Filtration: Concepts and Applications
,”
Environ. Sci. Technol.
,
5
(
11
), pp.
1105
1112
.10.1021/es60058a005
19.
Tufenkji
,
N.
, and
Elimelech
,
M.
,
2004
, “
Deviation From the Classical Colloid Filtration Theory in the Presence of Repulsive DLVO Interactions
,”
Langmuir
,
20
, pp.
10818
10828
.10.1021/la0486638
20.
Tufenkji
,
N.
, and
Elimelech
,
M.
,
2004
, “
Correlation Equation for Predicting Single-Collector Efficiency in Physicochemical Filtration in Saturated Porous Media
,”
Environ. Sci. Technol.
,
38
(
2
), pp.
529
536
.10.1021/es034049r
21.
Elimelech
,
M.
,
Jia
,
X.
,
Gregory
,
J.
, and
Williams
,
R.
,
1988
,
Particle Deposition & Aggregation: Measurement, Modelling and Simulation
,
Butterworth-Heinemann
,
New York
.
You do not currently have access to this content.