In this paper we have derived homogenized equations in explicit form of the linear elasticity theory in a two-dimensional domain with an interface highly oscillating between two straight lines, by using the homogenization method. First, the homogenized equation in the matrix form for generally anisotropic materials is obtained. Then, it is written down in the component form for specific cases when the materials are orthotropic, monoclinic with the symmetry plane at X1=0 and X2=0. Since these equations are in explicit form, they are significant in practical applications.

1.
Zaki
,
K. A.
, and
Neureuther
,
A. R.
, 1971, “
Scattering From a Perfectly Conducting Surface With a Sinusoidal Height Profile: TE Polarization
,”
IEEE Trans. Antennas Propag.
IETPAK 0018-926X,
19
, pp. 208–214.
2.
Waterman
,
P. C.
, 1975, “
Scattering by Periodic Surfaces
,”
J. Acoust. Soc. Am.
JASMAN 0001-4966,
57
, pp. 791–802.
3.
Belyaev
,
A. G.
,
Mikheev
,
A. G.
, and
Shamaev
,
A. S.
, 1992, “
Plane Wave Diffraction by a Rapidly Oscillating Surface
,”
Comput. Math. Math. Phys.
ZZZZZZ 0965-5425,
32
, pp. 1121–1133.
4.
Bao
,
G.
, and
Bonnetier
,
E.
, 2001, “
Optimal Design of Periodic Diffractive Structures
,”
Appl. Math. Optim.
AMOMBN 0095-4616,
43
, pp. 103–116.
5.
Talbot
,
J. R. S.
,
Titchener
,
J. B.
, and
Willis
,
J. R.
, 1990, “
The Reflection of Electromagnetic Waves From Very Rough Interfaces
,”
Wave Motion
WAMOD9 0165-2125,
12
, pp. 245–260.
6.
Singh
,
S. S.
, and
Tomar
,
S. K.
, 2007, “
Quasi-P-Waves at a Corrugated Interface Between Two Dissimilar Monoclinic Elastic Half-Spaces
,”
Int. J. Solids Struct.
IJSOAD 0020-7683,
44
, pp. 197–228.
7.
Singh
,
S. S.
, and
Tomar
,
S. K.
, 2008, “
qP-Wave at a Corrugated Interface Between Two Dissimilar Pre-Stressed Elastic Half-Spaces
,”
J. Sound Vib.
JSVIAG 0022-460X,
317
, pp. 687–708.
8.
Cheng
,
K. T.
, and
Olhoff
,
N.
, 1981, “
An Investigation Concerning Optimal Design of Solid Elastic Plates
,”
Int. J. Solids Struct.
IJSOAD 0020-7683,
17
, pp. 795–810.
9.
Achdou
,
Y.
,
Pironneau
,
O.
, and
Valentin
,
F.
, 1998, “
Effective Boundary Conditions for Laminar Flows Over Rough Boundaries
,”
J. Comput. Phys.
JCTPAH 0021-9991,
147
, pp. 187–218.
10.
Givoli
,
D.
, and
Elishakoff
,
I.
, 1992, “
Stress Concentration at a Nearly Circular Hole With Uncertain Irregularities
,”
ASME J. Appl. Mech.
JAMCAV 0021-8936,
59
, pp. S65–S71.
11.
Wang
,
C. -H.
, and
Chao
,
C. -K.
, 2002, “
On Pertubation Solutions of Nearly Circular Inclusion Problems in Plane Thermoelasticity
,”
ASME J. Appl. Mech.
JAMCAV 0021-8936,
69
, pp. 36–44.
12.
Ekneligoda
,
T. C.
, and
Zimmermam
,
R. W.
, 2008, “
Boundary Pertubation Solution for Nearly Circular Holes and Rigid Inclusions in an Infinite Elastic Medium
,”
ASME J. Appl. Mech.
JAMCAV 0021-8936,
75
, p. 011015.
13.
van Dyke
,
M.
, 1975,
Pertubation Methods in Fluid Mechanics
,
Parabolic
,
Stanford, CA
.
14.
Kohler
,
W.
,
Papanicolaou
,
G. C.
, and
Varadhan
,
S.
, 1981 “
Boundary and Interface Problems in Regions With Very Rough Boundaries
,”
Multiple Scattering and Waves in Random Media
,
P.
Chow
,
W.
Kohler
, and
G.
Papanicolaou
, eds.,
North-Holland
,
Amsterdam
, pp. 165–197.
15.
Nevard
,
J.
, and
Keller
,
J. B.
, 1997, “
Homogenization of Rough Boundaries and Interfaces
,”
SIAM J. Appl. Math.
SMJMAP 0036-1399,
57
, pp. 1660–1686.
16.
Bensoussan
,
A.
,
Lions
,
J. B.
, and
Papanicolaou
,
J.
, 1978,
Asymptotic Analysis for Periodic Structures
,
North-Holland
,
Amsterdam
.
17.
Sanchez-Palencia
,
E.
, 1980,
Nonhomogeneous Media and Vibration Theory
(Lecture Notes in Physics, Vol.
127
),
Springer-Verlag
,
Heidelberg
.
18.
Bakhvalov
,
N.
, and
Panasenko
,
G.
, 1989,
Homogenisation: Averaging of Processes in Periodic Media: Mathematical Problems of the Mechanics of Composite Materials
,
Kluwer
,
Dordrecht
.
19.
Vinh
,
P. C.
, and
Tung
,
D. X.
, 2010, “
Homogenized Equations of the Linear Elasticity in Two-Dimensional Domains With Very Rough Interfaces
,”
Mech. Res. Commun.
MRCOD2 0093-6413,
37
, pp. 285–288.
20.
Ting
,
T. C. T.
, 1996,
Anisotropic Elasticity: Theory and Applications
,
Oxford University Press
,
New York
.
You do not currently have access to this content.