This paper presents a nonlinear approach with regard to the dynamic stability of an isotropic metal foam circular cylindrical shell subjected to combined loads. The mechanical properties of metal foam vary in the thickness direction. Combinations of external pressure and axial load are taken into account. A nonlinear hypothesis of deformation of a plane cross section is formulated. The system of partial differential equations of motion for a shell is derived on the basis of Hamilton’s principle. The system of equations is analytically solved by Galerkin’s method. Numerical investigations of dynamic stability for the family of cylindrical shells with regard to analytical solution are carried out. Moreover, finite element model analysis is presented, and the results of the numerical calculations are shown in figures.

1.
Banhart
,
J.
, 2001, “
Manufacture, Characterization and Application of Cellular Metals and Metal Foams
,”
Prog. Mater. Sci.
PRMSAQ 0079-6425,
46
, pp. 559–632.
2.
Sahu
,
S. K.
, and
Datta
,
P. K.
, 2007, “
Research Advances in the Dynamic Stability Behavior of Plates and Shells: 1987–2005—Part 1: Conservative Systems
,”
Appl. Mech. Rev.
AMREAD 0003-6900,
60
, pp. 65–75.
3.
Carrera
,
E.
, 2001, “
Developments, Ideas, and Evaluations Based Upon Reissner’s Mixed Variational Theorem in the Modeling of Multilayered Plates and Shells
,”
Appl. Mech. Rev.
AMREAD 0003-6900,
54
, pp. 301–329.
4.
Carrera
,
E.
, 2003, “
Historical Review of Zig-Zag Theories for Multilayered Plates and Shells
,”
Appl. Mech. Rev.
AMREAD 0003-6900,
56
, pp. 287–308.
5.
Carrera
,
E.
,
Brischetto
,
S.
, and
Robaldo
,
A.
, 2008, “
Variable Kinematic Model for the Analysis of Functionally Graded Material Plates
,”
AIAA J.
AIAJAH 0001-1452,
46
(
1
), pp. 194–203.
6.
Volmir
,
A. C.
, 1972,
Nonlinear Dynamic of Plates and Shells
,
Nauka
,
Moscow
, in Russian.
7.
Doyle
,
J. F.
, 2001,
Nonlinear Analysis of Thin-Walled Structures. Static, Dynamic and Stability
,
Springer-Verlag
,
New York
.
8.
Magnucki
,
K.
, and
Ostwald
,
M.
, 2001,
Stability and Optimization Problems of Sandwich Structures
,
Wyd. Instytutu Technologii Eksploatacji
,
Radom, Poland
, in Polish.
9.
Kardomateas
,
G. A.
, 1993, “
Buckling of Thick Orthotropic Cylindrical Shells Under External Pressure
,”
ASME J. Appl. Mech.
JAMCAV 0021-8936,
60
, pp. 195–202.
10.
Kardomateas
,
G. A.
, 1995, “
Bifurcation of Equilibrium in Thick Orthotropic Cylindrical Shells Under Axial Compression
,”
ASME J. Appl. Mech.
JAMCAV 0021-8936,
62
, pp. 43–52.
11.
Kardomateas
,
G. A.
, and
Philobos
,
M. S.
, 1995, “
Buckling of Thick Orthotropic Cylindrical Shells Under Combined External Pressure and Axial Compression
,”
AIAA J.
AIAJAH 0001-1452,
33
(
10
), pp. 1946–1953.
12.
Kounadis
,
A.
, 2008, “
Static/Dynamic Buckling of Axially Compressed Thin-Walled Cylindrical Shells Using Simple Models
,”
AIAA J.
AIAJAH 0001-1452,
46
(
1
), pp. 132–141.
13.
Gibson
,
L. J.
, and
Ashby
,
M. F.
, 1982, “
The Mechanics of Three-Dimensional Cellular Materials
,”
Proc. R. Soc. London, Ser. A
PRLAAZ 0950-1207,
382
(
1782
), pp. 43–59.
14.
Ashby
,
M. F.
,
Evans
,
A. G.
,
Fleck
,
N. A.
,
Gibson
,
L. J.
,
Hutchinson
,
J. W.
, and
Wadley
,
H. N. G.
, 2000,
Metal Foams: A Design Guide
,
Butterworth-Heinemann
,
Boston
.
15.
Bart-Smith
,
H.
,
Hutchinson
,
J. W.
, and
Evans
,
A. G.
, 2001, “
Measurement and Analysis of the Structural Performance of Cellular Metal Sandwich Construction
,”
Int. J. Mech. Sci.
IMSCAW 0020-7403,
43
, pp. 1945–1963.
16.
Kováčik
,
J.
, 1999, “
Correlation Between Young’s Modulus and Porosity in Porous Materials
,”
J. Mater. Sci. Lett.
JMSLD5 0261-8028,
18
(
13
), pp. 1007–1010.
17.
Mielniczuk
,
J.
, and
Malinowski
,
M.
, 2005, “
Models of Porous Materials for Design of Construction Shell Elements
,”
Pojazdy Szynowe
,
3
, pp. 15–21.
18.
Malinowski
,
M.
, and
Magnucki
,
K.
, 2005, “
Buckling of an Isotropic Porous Cylindrical Shell
,”
Proceedings of the Tenth International Conference on Civil, Structural and Environmental Engineering Computing
,
B. H. V.
Topping
eds.,
Civil-Comp
,
Stirling, Scotland
, Paper No. 53.
19.
Magnucki
,
K.
,
Malinowski
,
M.
, and
Lewinski
,
J.
, 2006, “
Optimal Design of an Isotropic Porous Cylindrical Shell
,”
Proceedings of the ASME Pressure Vessels and Piping Conference, Vol. 3, Design and Analysis
, Vancouver, Paper No. PVP2006-ICPVT-11, pp. 345–352.
20.
Belica
,
T.
, and
Magnucki
,
K.
, 2006, “
Dynamic Stability of a Porous Cylindrical Shell
,”
Proc. Appl. Math. Mech.
ZZZZZZ 1617-7061,
6
(
1
), pp. 207–208.
21.
Belica
,
T.
, and
Magnucki
,
K.
, 2007, “
Dynamic Stability of a Porous Cylindrical Shell Subjected to Impulse of Forces Combined
,”
Journal of KONES
,
14
(
3
), pp. 39–48.
22.
Balch
,
D. K.
,
O’Dwyer
,
J. G.
,
Davis
,
G. R.
,
Cady
,
C. M.
,
Gray
,
G. T.
, III
, and
Dunand
,
D. C.
, 2005, “
Plasticity and Damage in Aluminum Syntactic Foams Deformed Under Dynamic and Quasi-Static Conditions
,”
Mater. Sci. Eng., A
MSAPE3 0921-5093,
391
(
1–2
), pp. 408–417.
You do not currently have access to this content.