The effect of surface and interface elasticity in the analysis of the Saint–Venant torsion problem of an eccentrically two-phase fcc circular nanorod is considered; description of the behavior of such a small structure via usual classical theories cease to hold. In this work, the problem is formulated in the context of the surface/interface elasticity. For a rigorous solution of the proposed problem, conformal mapping with a Laurent series expansion are employed together. The numerical results well illustrate that the torsional rigidity and stress distribution corresponding to such nanosized structural elements are significantly affected by the size. In order to employ surface and interface elasticity, several key properties such as surface energy, surface stresses, and surface elastic constants of several fcc materials as well as interface properties of the noncoherent fcc bicrystals are derived in terms of Rafii-Tabar and Sutton interatomic potential function. For determination of the surface/interface parameters a molecular dynamics program, which uses the above-mentioned potential function, is developed. The calculated surface and interface properties are in reasonable agreement with the corresponding results in literature. Some applications of the given results can be contemplated in the design of micro-/nano-electromechanical systems.

1.
Xia
,
Y.
,
Yang
,
P.
,
Sun
,
Y.
,
Wu
,
Y.
,
Mayers
,
B.
,
Gates
,
B.
,
Yin
,
Y.
,
Kim
,
F.
, and
Yan
,
H.
, 2003, “
One-Dimensional Nanostructures: Synthesis, Characterization, and Applications
,”
Adv. Mater.
0935-9648,
15
(
5
), pp.
353
389
.
2.
Yoo
,
S. H.
, and
Park
,
S.
, 2007, “
Platinum-Coated, Nanoporous Gold Nanorod Array; Synthesis and characterization
,”
Adv. Mater.
0935-9648,
19
(
12
), pp.
1612
1615
.
3.
Li
,
C.
,
Ji
,
W.
,
Chen
,
J.
, and
Tao
,
Z.
, 2007, “
Metallic Aluminum Nanorods: Synthesis via Vapor-Deposition and Applications in Al/Air Batteries
,”
Chem. Mater.
0897-4756,
19
, pp.
5812
5814
.
4.
Fan
,
J. G.
, and
Zhao
,
Y. P.
, 2008, “
Gold-Coated Nanorod Array as Highly Sensitive Substrates for Surface-Enhanced Raman Spectroscopy
,”
Langmuir
0743-7463,
24
(
24
), pp.
14172
14175
.
5.
Huang
,
X.
,
Neretina
,
S.
, and
El-sayed
,
M. A.
, 2009, “
Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications
,”
Adv. Mater.
0935-9648,
21
, pp.
4880
4910
.
6.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
, 1975, “
A Continuum Theory of Elastic Material Surfaces
,”
Arch. Ration. Mech. Anal.
0003-9527,
57
(
4
), pp.
291
323
.
7.
Cahn
,
J. W.
, and
Larche
,
F.
, 1982, “
Surface Stress and the Chemical Equilibrium of Small Crystals. II. Solid Particles Embedded in a Solid Matrix
,”
Acta Metall.
0001-6160,
30
(
1
), pp.
51
56
.
8.
Miller
,
R. E.
, and
Shenoy
,
V. B.
, 2000, “
Size-Dependent Elastic Properties of Nanosized Structural Elements
,”
Nanotechnology
0957-4484,
11
, pp.
139
147
.
9.
Shenoy
,
V. B.
, 2002, “
Size-Dependent Rigidities of Nanosized Torsional Elements
,”
Int. J. Solids Struct.
0020-7683,
39
, pp.
4039
4052
.
10.
Sharma
,
P.
,
Ganti
,
S.
, and
Bhate
,
N.
, 2003, “
Effect of Surfaces on the Size-Dependent Elastic State of Nano-Inhomogeneities
,”
Appl. Phys. Lett.
0003-6951,
82
(
4
), pp.
535
537
.
11.
Sharma
,
P.
, and
Ganti
,
S.
, 2004, “
Size-Dependent Eshelby’s Tensor for Embedded Nano-Inclusions Incorporating Surface/Interface Energies
,”
ASME Trans. J. Appl. Mech.
0021-8936,
71
(
5
), pp.
663
671
.
12.
Duan
,
H. L.
,
Wang
,
J.
,
Huang
,
Z. P.
, and
Karihaloo
,
B. L.
, 2005, “
Stress Concentration Tensors of Inhomogeneities With Interface Effects
,”
Mech. Mater.
0167-6636,
37
, pp.
723
736
.
13.
Duan
,
H. L.
,
Wanga
,
J.
,
Huanga
,
Z. P.
, and
Karihaloo
,
B. L.
, 2005, “
Size-Dependent Effective Elastic Constants of Solids Containing Nano-Inhomogeneities With Interface Stress
,”
J. Mech. Phys. Solids
0022-5096,
53
(
7
), pp.
1574
1596
.
14.
Lim
,
C. W.
,
Li
,
Z. R.
, and
He
,
L. H.
, 2006, “
Size-Dependent, Non-Uniform Elastic Field Inside a Nano-Scale Spherical Inclusion Due to Interface Stress
,”
Int. J. Solids Struct.
0020-7683,
43
, pp.
5055
5065
.
15.
He
,
L. H.
, and
Li
,
Z. R.
, 2006, “
Impact of Surface Stress on Stress Concentration
,”
Int. J. Solids Struct.
0020-7683,
43
, pp.
6208
6219
.
16.
Sharma
,
P.
, and
Wheeler
,
L. T.
, 2007, “
Size-Dependent Elastic State of Ellipsoidal Nano-Inclusions Incorporating Surface/Interface Tension
,”
ASME J. Appl. Mech.
0021-8936,
74
, pp.
447
454
.
17.
Mi
,
C.
, and
Kouris
,
D. A.
, 2006, “
Nanoparticles Under the Influence of Surface/Interface Elasticity
,”
J. Mech. Mater. Struct.
1559-3959,
1
(
4
), pp.
763
791
.
18.
Mi
,
C.
, and
Kouris
,
D. A.
, 2008, “
Nanoparticles and the Influence of Interface Elasticity
,”
Theor. Appl. Mech.
,
35
(
1–3
), pp.
267
286
.
19.
Muskhelishvili
,
N. I.
, 1953,
Some Basic Problems of the Mathematical Theory of Elasticity
,
Noordhoff
,
Groningen
.
20.
Shuttleworth
,
R.
, 1950, “
The Surface Tension of Solids
,”
Proc. Phys. Soc., London, Sect. A
0370-1298,
63
, pp.
444
457
.
21.
Herring
,
C.
, 1951, “
Some Theorems on the Free Energies of Crystal Surfaces
,”
Phys. Rev.
0031-899X,
82
(
1
), pp.
87
93
.
22.
Cahn
,
J. W.
, 1980, “
Surface Stress and the Chemical Equilibrium of Small Crystals I. The Case of the Isotropic Surface
,”
Acta Metall.
0001-6160,
28
, pp.
1333
1338
.
23.
Ackland
,
G. J.
, and
Finnis
,
M. W.
, 1986, “
Semi-Empirical Calculation of Solid Surface Tensions in Body-Centered Cubic Transition Metals
,”
Philos. Mag. A
0141-8610,
54
(
2
), pp.
301
315
.
24.
Gumbsch
,
P.
, and
Daw
,
M. S.
, 1991, “
Interface Stresses and Their Effects on the Elastic Moduli of Metallic Multilayers
,”
Phys. Rev. B
0556-2805,
44
(
8
), pp.
3934
3938
.
25.
Shenoy
,
V. B.
, 2005, “
Atomistic Calculation of Elastic Properties of Metallic fcc Crystal Surfaces
,”
Phys. Rev. B
0556-2805,
71
, p.
094104
.
26.
Mi
,
C.
,
Jun
,
S.
,
Kouris
,
D. A.
, and
Kim
,
S. Y.
, 2008, “
Atomistic Calculation of Interface Elastic Properties in Noncoherent Metallic Bilayers
,”
Phys. Rev. B
0556-2805,
77
, p.
075425
.
27.
Rafii-Tabar
,
H.
, and
Sutton
,
A. P.
, 1991, “
Long-Range Finnis-Sinclair Potentials for fcc Metallic Alloys
,”
Philos. Mag. Lett.
0950-0839,
63
(
4
), pp.
217
224
.
28.
Sokolnikoff
,
I. S.
, 1956,
Mathematical Theory of Elasticity
,
McGraw-Hill
,
New York
.
29.
Gurtin
,
M. E.
,
Weissmuller
,
J.
, and
Larche
,
F.
, 1998, “
A General Theory of Curved Deformable Interfaces in Solids at Equilibrium
,”
Philos. Mag. A
0141-8610,
78
(
5
), pp.
1093
1109
.
30.
Cammarata
,
R. C.
, 1994, “
Surface and Interface Stress Effects in Thin Films
,”
Prog. Surf. Sci.
0079-6816,
46
(
1
), pp.
1
38
.
31.
Ibach
,
H.
, 1997, “
The Role of Surface Stress in Reconstruction, Epitaxial Growth and Stabilization of Mesoscopic Structures
,”
Surf. Sci. Rep.
0167-5729,
29
(
5–6
), pp.
195
263
.
32.
Oh
,
D. J.
, and
Johnson
,
R. A.
, 1988, “
Simple Embedded Atom Method Model for fcc and HCP Metals
,”
J. Mater. Res.
0884-2914,
3
, pp.
471
478
.
33.
Ercolessi
,
F.
, and
Adams
,
J. B.
, 1994, “
Interatomic Potentials From First-Principles Calculations: The Force-Matching Method
,”
Europhys. Lett.
0295-5075,
26
(
8
), pp.
583
588
.
34.
Voter
,
A. F.
, 1994,
Intermetallic Compounds: Principles
, Vol.
1
,
Wiley
,
New York
, pp.
77
90
.
35.
Johnson
,
R. A.
, 1989, “
Alloy Models With the Embedded-Atom Method
,”
Phys. Rev. B
0556-2805,
39
, pp.
12554
12559
.
36.
Finnis
,
M. W.
, and
Sinclair
,
J. E.
, 1984, “
A Simple Empirical N-Body Potential for Transition Metals
,”
Philos. Mag. A
0141-8610,
50
, pp.
45
55
.
37.
Sutton
,
A. P.
, and
Chen
,
J.
, 1990, “
Long-Range Finnis-Sinclair Potentials
,”
Philos. Mag. Lett.
0950-0839,
61
(
3
), pp.
139
146
.
38.
Rafii-Tabar
,
H.
,
Shodja
,
H. M.
,
Darabi
,
M.
, and
Dahi
,
A.
, 2006, “
Molecular Dynamics Simulation of Crack Propagation in fcc Materials Containing Clusters of Impurities
,”
Mech. Mater.
0167-6636,
38
, pp.
243
252
.
39.
Shodja
,
H. M.
,
Pahlevani
,
L.
, and
Hamed
,
E.
, 2007, “
Inclusion Problems Associated With Thin fcc Films: Linkage Between Eigenstrain and Inter-Atomic Potential
,”
Mech. Mater.
0167-6636,
39
, pp.
803
818
.
40.
Shodja
,
H. M.
, and
Kamalzare
,
M.
, 2009, “
A Study of Nanovoid, Griffith-Inglis Crack, Cohesive Crack, and Some Associated Interaction Problems in fcc Materials via the Many Body Atomic Scale FEM
,”
Comput. Mater. Sci.
0927-0256,
45
, pp.
275
284
.
41.
Shodja
,
H. M.
, and
Tehranchi
,
A.
, 2010, “
A Formulation for the Characteristic Lengths of fcc Materials in First Strain Gradient Elasticity via the Sutton-Chen Potential
,”
Philos. Mag.
1478-6435,
90
(
14
), pp.
1893
1913
.
You do not currently have access to this content.