A stress analysis of a plane infinitely layered medium subjected to surface loadings is performed using Airy stress functions, integral transforms, and a revised transfer matrix approach. Proper boundary conditions at infinity are for the first time established, which reduces the problem size by one half. Methods and approximations are also presented to enable numerical treatment and to overcome difficulties inherent to such formulations. [S0021-8936(00)01103-X]

1.
Lekhnitsky, S. G., 1968, Anisotropic Plates, Gordon and Breach, New York (English translation by S. W. Tsai and T. Cheron).
1.
Bjarnehed
,
H. L.
,
1991
, “
Rigid Punch on Stressed Orthotropic Half-Plane With Partial Slip
,”
ASME J. Appl. Mech.
,
58
, No.
1
, pp.
128
133
;
2.
Erratum, ,
1991
,
58
, No.
2
, p.
565
565
.
1.
Choi
,
H. J.
, and
Thangjitham
,
S.
,
1991
, “
Micro- and Macromechanical Stress and Failure Analyses of Laminated Composites
,”
Compos. Sci. Technol.
,
40
, pp.
289
305
.
2.
Choi
,
H. J.
, and
Thangjitham
,
S.
,
1991
, “
Stress Analysis of Multilayered Anisotropic Elastic Media
,”
ASME J. Appl. Mech.
,
58
, pp.
382
387
.
3.
Small
,
J. C.
, and
Booker
,
J. R.
,
1984
, “
Finite Layer Analysis of Layered Elastic Materials Using a Flexibility Approach, Part 1—Strip Loadings
,”
Int. J. Numer. Methods Eng.
,
20
, pp.
1025
1037
.
4.
Bufler
,
H.
,
1971
, “
Theory of Elasticity of a Multilayered Medium
,”
J. Elast.
,
1
, pp.
125
143
.
5.
Bahar
,
L. Y.
,
1972
, “
Transfer Matrix Approach to Layererd Systems
,”
J. Eng. Mech.
,
98
, No.
EM5
, pp.
1159
1172
.
6.
Bahar
,
L. Y.
,
1975
, “
A State Space Approach to Elasticity
,”
J. Franklin Inst.
,
229
, pp.
34
41
.
7.
Bonnaud, E. L., and Neumeister, J. M., 1999, “Stress Analysis of General Orthotropic Multilayered Systems Subjected to Surface Loading,” Report 238. Department of Solid Mechanics, Royal Institute of Technology, Stockholm, Sweden.
8.
Chen
,
W. T.
,
1971
, “
Computation of Stresses and Displacements in a Layered Elastic Medium
,”
Int. J. Eng. Sci.
,
9
, pp.
775
800
.
9.
Yue
,
1995
, “
On Generalized Kelvin Solutions in a Multilayered Elastic Medium
,”
J. Elast.
,
40
, pp.
1
43
.
10.
Johnson, K. L., 1985, Contact Mechanics, Cambridge University Press, Cambridge, UK.
You do not currently have access to this content.