A numerical investigation of the tensile test using a finite-difference, one-dimensional elasto-viscoplastic code is presented. The influence of strain rate, strain rate sensitivity, and inertia on the development of the axial particle velocity, stress, strain, and strain rate profiles in pure copper is studied. The initial stages of post-uniform deformation and the stabilizing influence of inertia and strain rate sensitivity in this regime are demonstrated. Both inertia and strain rate sensitivity are shown to decrease the rate of unloading of the uniform region of a tensile specimen past the point of instability given by the maximum load criterion. A comparison of numerically predicted and experimentally determined values of the post-uniform elongation is shown.

This content is only available via PDF.
You do not currently have access to this content.