This paper presents the mechanical design and modeling of an active segment of a bioinspired piezocomposite aquatic pump. The design and analysis is based on an electromechanical Euler-Bernoulli beam model. The self-contained propulsion/pumping system is composed of a series of piezo-active soft cymbal-like segments that are connected by passive soft films. By applying coordinated excitations for expansion and contraction to different active segments, the design creates a traveling wave along the pump axis, which in return propels the fluid to generate a unidirectional thrust force. In the model, the insulation and mechanical properties of the waterproofing sealant layer are considered. Using the proposed electromechanical model, a parametric analysis is conducted to understand the effectiveness of the cymbal-like piezocomposite active segment. Two performance metrics are considered, including the area change of the enclosed by the cymbal-like segment, and the work done by the actuators. The optimal structural parameters of the piezocomposite pump are decided by these performance metrics.

This content is only available via PDF.
You do not currently have access to this content.