Morphing wings offer potential efficiency and performance benefits for aircraft fulfilling multiple mission requirements. However, the design of shape adaptable wings is limited by the inherent design trade-offs of weight, aerodynamic control authority, and load-carrying capacity. A potential solution to this trilemma is proposed by exploiting the stiffness adaptability of thin, curved structures which geometric instability results in two statically stable states. We design and manufacture a morphing wing section demonstrator composed of two compliant 3D printed ribs monolithically embedded with the proposed bi-stable elements. The demonstrator’s structural response is numerically modelled and compared with experimental results from a static loading test. A deflection field of the response under mechanical actuation is obtained through digital image correlation. Numerical and experimental results indicate the capability of the wing section to achieve four distinct stable configurations with varying global stiffness behavior.

This content is only available via PDF.
You do not currently have access to this content.