In this study, the stability of a structure and mitigation of the vibration of a structure subjected to annular flow are investigated when the parameters of the structure and fluid have variability or uncertainty. The equations of motion of the structure and fluid are given by the Euler-Bernoulli-type partial differential equation and the Navier–Stokes equation, respectively. Hence, the fluid–structure coupled system has variability. The fluid–structure coupled equation considering variability is derived from the above-mentioned equations. By drawing the root locus of the coupled equation, the stability of the coupled system with variability is investigated. Because the parameters of structure and fluid have variability, the critical flow velocity also varies. The effect of parameter variability on the critical flow velocity variability is investigated. Furthermore, to reduce the coupled vibration of the system with variability, a control input is used. Through adequate control, the coupled system with variability is stabilized.

This content is only available via PDF.
You do not currently have access to this content.