In response to the technical challenges faced by aging plant systems and components at nuclear power plants (NPP), the Electric Power Research Institute (EPRI) has a product entitled Integrated Life Cycle Management (ILCM). The ILCM software is a quantitative tool that supports capital asset and component replacement decision-making at NPPs. ILCM is comprised of models that predict the probability of failure (PoF) over time for various high-value components such as steam generators, turbines, generators, etc. The PoF models allow the user to schedule replacements at the optimum time, thereby reducing unplanned equipment shutdowns and costs. This paper describes a mathematical model that was developed for critical heat exchangers in a power plant. The heat exchanger model calculates the probability of the tubes, shell, or internals failing individually, and then accumulates the failures across the heat exchanger sub-components. The dominant degradation mechanisms addressed by the model include stress corrosion cracking, wear, microbiologically influenced corrosion, flow accelerated corrosion, and particle-induced erosion. The heat exchanger model combines physics-based algorithms and operating experience distributions to predict the cumulative PoF over time. The model is applicable to shell and tube heat exchangers and air-to-water heat exchangers. Many different types of fluids including open cycle fresh water, closed cycle fresh water, sea water, brackish water, air, closed cooling water, steam, oil, primary water, and condensate are included. Examples of PoF over time plots are also provided for different fluid types and operating conditions.

This content is only available via PDF.
You do not currently have access to this content.