This study uses a non-linear optimization method coupled with a vortex lattice cavitating propeller analysis method to design efficient propeller blades. Different constraints are imposed to improve propeller design. Several advancements in the method are shown, including the option for quadratic skew, user specified skew distribution, and a constraint limiting the minimum pressure in wetted regions of the blade. Results for a series of fully wetted runs demonstrate the effectiveness of the constraint on minimum pressure in preventing the onset of bubble or mid-chord cavitation. A comparison of a design in uniform inflow with a design in nonuniform inflow indicates that a propeller designed by the present method in non-uniform inflow has more favorable cavitating flow characteristics than a propeller design assuming uniform inflow. Results are also shown for a series of runs utilizing the cavity constraints. These results indicate that the present method can be used to improve on propeller designs by imposing constraints on the cavity area and cavity volume velocity harmonics, as well as by using a quadratic skew distribution.

This content is only available via PDF.
You do not currently have access to this content.