The essence of this research is to mitigate shock through material design. Here we seek to develop a thorough understanding of the material through experimental characterization methods that lend themselves to creating verifiable constitutive relations, all while working towards the development of a new blast resistant elastomeric composite material. The host elastomer, polyurea, is created by reacting Versalink P-1000 with Isonate 143L. This study evaluates the impact of both chemistry modifications and the integration of micro-scale additives on the polyurea material system properties and performance. The properties of the resultant elastomers and elastomeric composite materials are mechanically and thermally characterized using durometer testing, dynamic mechanical analysis (DMA) testing, and differential scanning calorimetry (DSC) testing in order to determine the hardness, storage and loss moduli, and glass transition temperature of the composites, respectively. Preliminary results indicate that the durometer and dynamic mechanical properties of the material can be significantly altered through such modifications. The work described here is part of an ongoing effort to develop and verify rules and tools for creating elastomer-based composite materials with optimally designed compositions and characteristics.

This content is only available via PDF.
You do not currently have access to this content.