Design and manufacturing simulations of critical components such as bullets are considered crucial, particularly, when it is associated with the expense and time constraint of the engineering projects. During the manufacturing, the projectile jacket is the component that faces the greatest strain or stress. In order to find an optimal manufacturing operation for the .50 caliber projectile, an experiment is performed using the Box-Wilson Central Composite Design (CCD) using a combination of two controlled factors, i.e., friction coefficients and hardening exponents, with three-levels of each. The sensitivity of the plastic strain to the hardening exponent and friction coefficients is analyzed. The response surface plot fits well to the second-order polynomial function and is able to provide relative the same plots when the model is extended up to the fourth-order. Furthermore, it is found that the greatest plasticity likely to occur in the jacket walls as the ironing process is performed. Based on the residual strain and stresses analysis, it is evident that the selected material used in the production of projectile is viable. Finally, the ductile fracture analysis confirms that the jacket design is considered safe for the selected manufacturing processes.

This content is only available via PDF.
You do not currently have access to this content.