The objective of this paper is to review and suggest wave-rotor applications in power generation and refrigeration systems. The emphasis is on recent investigations performed by the authors for a microturbine (30 kW) and a novel enhancement of a state-of-the-art water (R718) compression refrigeration cycle. The results of thermodynamic analyses performed for the small gas turbine topped with a 4-port wave rotor show that engine overall efficiency and specific work may increase by up to about 33% without changing the compressor. Expecting similar advantages, it is suggested to use wave rotors in novel R718 compression refrigeration systems. This also introduces a new concept of a condensing wave-rotor that employs pressurized water to both (1) additional rise the pressure of the vapor and (2) desuperheat and condense it, all in one dynamic process. Adding the condensing wave-rotor to the refrigeration cycle allows for a lower pressure ratio of the compressor, which is crucial for the R718 chiller technology. Some structural and economic advantages of the proposed system are mentioned.

This content is only available via PDF.
You do not currently have access to this content.