Abstract

In the military and aerospace fields, bistable structures with adjustable or adaptive stiffness have been widely applied. Origami structures can be used to design bistable systems due to their unique geometrical characteristics. In this paper, we investigate a special design of winding origami, which consists of a square hub in the center and compactly folded panels around it. This delicate design provides the structure a bistable property. According to its motion characteristics, the folding process of the winding origami can be divided into two stages: the mechanism motion stage and the structural deformation stage. The D-H matrix method and truss transformation method were combined to analyze the kinematic relations, and the winding origami pattern was found to have one degree of freedom. At the structural deformation stage, the mechanical response and the local panel deformation were carefully studied via both experiments and finite element simulations, and a reasonable agreement was reached. It was observed that four creases exhibited a non-uniform folding pattern during the deformation process; that is, a portion of the crease was totally flattened while the rest remained folded. The origami structure’s unique kinematic and bistable features could possibly help provide some new ideas in designing a bistable system in the future.

This content is only available via PDF.
You do not currently have access to this content.