Design thinking is essential to the success of a design process as it helps achieve the design goal by guiding design decision-making. Therefore, fundamentally understanding design thinking is vital for improving design methods, tools and theories. However, interpreting design thinking is challenging because it is a cognitive process that is hidden and intangible. In this paper, we represent design thinking as an intermediate layer between human designers’ thought processes and their design behaviors. To do so, this paper first identifies five design behaviors based on the current design theories. These behaviors include design action preference, one-step sequential behavior, contextual behavior, long-term sequential behavior, and reflective thinking behavior. Next, we develop computational methods to characterize each of the design behaviors. Particularly, we use design action distribution, first-order Markov chain, Doc2Vec, bi-directional LSTM autoencoder, and time gap distribution to characterize the five design behaviors. The characterization of the design behaviors through embedding techniques is essentially a latent representation of the design thinking, and we refer to it as design embeddings. After obtaining the embedding, an X-mean clustering algorithm is adopted to each of the embeddings to cluster designers. The approach is applied to data collected from a high school solar system design challenge. The clustering results show that designers follow several design patterns according to the corresponding behavior, which corroborates the effectiveness of using design embedding for design behavior clustering. The extraction of design embedding based on the proposed approach can be useful in other design research, such as inferring design decisions, predicting design performance, and identifying design actions identification.

This content is only available via PDF.
You do not currently have access to this content.